Skip to main content
Log in

Replicative study of susceptibility to childhood-onset schizophrenia in Kazakhs

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This paper reports the results of replicative analysis of associations of 15 SNPs in a region of 14 genes previously identified in genome-wide association studies (GWAS) with early-onset schizophrenia in Kazakhs. An association of early-onset schizophrenia with genetic markers in three genes (VRK2, KCNB2, and CPVL) was found. An association of rs2312147 in the VRK2 gene with schizophrenia was also previously reported in the Chinese population, so this marker may be considered as possibly race-specific. Two groups consisting of four and six genes demonstrating intergenic epistatic interactions were revealed by multifactor dimensionality reduction methods. The gene ontologies of 14 studied genes were reduced to variants of one molecular function (peptidase activity) and one biological process (positive regulation of biosynthesis processes). Bioinformatic analysis of the protein-protein interactions of products of the genes under study demonstrates that the products of six out of 14 genes may be involved in a single interrelated network, the major connecting link of which is represented by their ubiquitination by the UBC protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riley, B. and Kendler, K.S., Molecular genetic studies of schizophrenia, Eur. J. Hum. Genet., 2006, vol. 14, pp. 669–680.

    Article  CAS  PubMed  Google Scholar 

  2. Golimbet, V.E., Genetics of schizophrenia, Zh. Nevrol. Psikhiatrii im. S.S. Korsakova, 2003, vol. 103, no. 3, pp. 58–67.

    CAS  Google Scholar 

  3. Khomenko, N.V., Genetic and environmental factors in schizophrenia development, Med. Zh., 2012, no. 2, pp. 15–18.

    Google Scholar 

  4. Welter, D., MacArthur, J., Morales, J., et al., The NHGRI GWAS catalog, a curated resource of SNP-trait associations, Nucleic Acids Res., 2014, vol. 42, pp. D1001–D1006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ioannides, J.P., Ntzani, E.E., and Trikalinos, T.A., “Racial” differences in genetic effects for complex diseases, Nat. Genet., 2004, vol. 36, no. 12, pp. 1312–1318.

    Article  Google Scholar 

  6. Stepanov, V.A., Genomes, populations, diseases: ethnical genomics and personalized medicine, Acta Nat., 2010, vol. 2, no. 4, pp. 18–34.

    Google Scholar 

  7. Shi, Y., Li, Z., Xu, Q., et al., Common variants on chromosome 6p22.1 are associated with schizophrenia, Nature, 2009, vol. 460, no. 7256, pp. 753–757.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Ikeda, M., Aleksic, B., Kinoshita, Y., et al., Genomewide association study of schizophrenia in a Japanese population, Biol. Psychiatry, 2011, vol. 69, no. 5, pp. 472–478.

    Article  PubMed  Google Scholar 

  9. Yamada, K., Iwayama, Y., Hattori, E., et al., Genomewide association study of schizophrenia in Japanese population, PLoS One, 2011, vol. 6, no. 6. e20468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ma, X., Deng, W., Liu, X., et al., A genome-wide association study for quantitative traits in schizophrenia in China, Genes Brain Behav., 2011, vol. 10, no. 7, pp. 734–739.

    Article  CAS  PubMed  Google Scholar 

  11. Yue, W.H., Wang, H.F., Sun, L.D., et al., Genomewide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2, Nat. Genet., 2011, vol. 43, no. 12, pp. 1228–1231.

    Article  CAS  PubMed  Google Scholar 

  12. Shi, Y., Li, Z., Xu, Q., et al., Common variants on 8p12 and 1q24.2 confer risk of schizophrenia, Nat. Genet., 2011, vol. 43, no. 12, pp. 1224–1227.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wong, E.H., So, H.C., Li, M., et al., Common variants on Xq28 conferring risk of schizophrenia in Han Chinese, Schizophr. Bull., 2013 (in press).

    Google Scholar 

  14. Saduakasova, K.Z., Psychic dysontogenesis and early childhood-onset schizophrenia in terms of age periodization of mental development, in Sovremennye problemy teoreticheskoi i klinicheskoi meditsiny (Modern Problems of Theoretical and Clinical Medicine), Almaty. 2004, pp. 203–204.

    Google Scholar 

  15. Yur’eva, O.P., On dysontogenesis types in children with schizophrenia, Nevropatol. Psikhiatrii, 1970, vol. 70, no. 8, pp. 1229–1235.

    Google Scholar 

  16. Addington, A.M., Gornick, M., Sporn, A.L., et al., Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified, Biol. Psychiatry, 2004, vol. 55, no. 10, pp. 976–980.

    Article  CAS  PubMed  Google Scholar 

  17. Gornick, M.C., Addington, A.M., Sporn, A., et al., Dysbindin (DTNBP1, 6p22.3) is associated with childhood-onset psychosis and endophenotypes measured by the Premorbid Adjustment Scale (PAS), J. Autism Dev. Disord., 2005, vol. 35, no. 6, pp. 831–838.

    Article  CAS  PubMed  Google Scholar 

  18. Maziade, M., Martinez, M., Rodrigue, C., et al., Childhood/early adolescenceonset and adult-onset schizophrenia: heterogeneity at the dopamine D3 receptor gene, Br. J. Psychiatry, 1997, vol. 170, pp. 27–30.

    Article  CAS  PubMed  Google Scholar 

  19. Sekizawa, T., Iwata, Y., Nakamura, K., et al., Childhood-onset schizophrenia and tryptophan hydroxylase gene polymorphism, Am. J. Med. Genet., Part B, 2005, vol. 136B, no. 1, p. 106.

    Article  Google Scholar 

  20. Pakhomova, C.A., Korovaitseva, G.I., Monchakovkaya, M.Yu., et al., Molecular genetic studies of early-onset schizophrenia, Zh. Nevrol. Psikhiatrii im. S. S. Korsakova, 2010, vol. 110, no. 2, pp. 66–69.

    CAS  Google Scholar 

  21. Puzyrev, V.P. and Stepanov, V.A., Patologicheska anatomiya genoma cheloveka (Pathological Anatomy of the Human Genome), Tomsk: STT. 1997.

    Google Scholar 

  22. Stefansson, H., Ophof, R.A., Steinberg, S., et al., Common variants conferring risk of schizophrenia, Nature, 2009, vol. 460, no. 7256, pp. 744–747.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Purcell, S.M., Wray, N.R., Stone, J.L., et al., Common polygenic variation contributes to risk of schizophrenia and bipolar disorder, Nature, 2009, vol. 460, no. 7256, pp. 748–752.

    CAS  PubMed  Google Scholar 

  24. O’Donovan, M.C., Craddock, N., Norton, N., et al., Identification of loci associated with schizophrenia by genome-wide association and follow-up, Nat. Genet., 2008, vol. 40, no. 9, pp. 1053–1055.

    Article  PubMed  Google Scholar 

  25. Sullivan, P.F., Lin, D., Tzeng, J.Y., et al., Genomewide association for schizophrenia in the CATIE study: results of stage 1, Mol. Psychiatry, 2008, vol. 13, no. 6, pp. 570–584.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Shifman, S., Johannesson, M., Bronstein, M., et al., Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women, PLoS Genet., 2008, vol. 4, no. 2. e28

    Article  PubMed Central  PubMed  Google Scholar 

  27. Cirulli, E.T., Kasperavicite, D., Attix, D.K., et al., Common genetic variation and performance on standardized cognitive tests, Eur. J. Hum. Genet., 2010, vol. 18, no. 7, pp. 815–820.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Need, A.C., Attix, D.K., McEvoy, J.M., et al., A genome-wide study of common SNPs and CNVs in cognitive performance in the CANTAB, Hum. Mol. Genet., 2009, vol. 18, no. 23, pp. 4650–4661.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Huang, D.W., Sherman, B.T., and Lempicki, R.A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc., 2009, vol. 4, no. 1, pp. 44–57.

    Article  CAS  Google Scholar 

  30. Kanehisa, M., Goto, S., Sato, Y., et al., KEGG for integration and interpretation of large-scale molecular datasets, Nucleic Acid Res., 2012, vol. 40, pp. D109–D114.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Franceschini, A., Szklarczyk, D., Frankild, S., et al., STRING v. 9.1: protein-protein interaction networks, with increased coverage and integration, Nucleic Acids Res., 2013, vol. 41, pp. D808–D815.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. The 1000 Genomes Project Consortium: an integrated map of genetic variation from 1092 human genomes, Nature, 2012, vol. 491, pp. 56–63.

  33. The International HapMap 3 Consortium: integrating common and rare genetic variation in diverse human populations, Nature, 2010, vol. 467, pp. 52–58.

  34. Steinberg, S., de Jong, S., Irish Schizophrenia Genomics Consortium, et al., Common variants at VRK2 and TCF4 conferring risk of schizophrenia, Hum. Mol. Genet., 2011, vol. 20, no. 20, pp. 4076–4081.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Li, M., Wang, Y., Zheng, X., et al., Meta-analysis and brain imaging data support the involvement of VRK2 (rs2312147) in schizophrenia susceptibility, Schizophr. Res., 2012, vol. 142, pp. 200–205.

    Article  PubMed  Google Scholar 

  36. Kuhn, M., Simonovic, M., Roth, A., et al., AIP4/Itch regulates Notch receptor degradation in the absence of ligand, PLoS One, 2008, vol. 3, no. 7. e2735

    Article  Google Scholar 

  37. Yamada, M., Ohnishi, J., Ohkawara, B., et al., NARF, an nemo-like kinase (NLK)-associated ring finger protein regulates the ubiquitylation and degradation of Tcell factor/lymphoid enhancer factor (TCF/LEF), J. Biol. Chem., 2006, vol. 281, no. 30, pp. 20749–20760.

    Article  CAS  PubMed  Google Scholar 

  38. Altun, M., Kramer, H.B., Willems, L.I., et al., Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes, Chem. Biol., 2011, vol. 18, no. 11, pp. 1401–1412.

    Article  CAS  PubMed  Google Scholar 

  39. Danielsen, J.M., Sylvestersen, K.B., Bekker-Jensen, S., et al., Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level, Mol. Cell. Proteomics, 2011, vol. 10, no. 3. P. M110.003590.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Afrazi, A., Sodhi, C.P., Good, M., et al., Intracellular heat shock protein-70 negatively regulates TLR4 signaling in the newborn intestinal epithelium, J. Immunol., 2012, vol. 88, no. 9, pp. 4543–4557.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Stepanov.

Additional information

Original Russian Text © V.A. Stepanov, A.V. Bocharova, K.Z. Saduakassova, A.V. Marusin, L.A. Koneva, K.V. Vagaitseva, G.S. Svyatova, 2015, published in Genetika, 2015, Vol. 51, No. 2, pp. 227–235.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, V.A., Bocharova, A.V., Saduakassova, K.Z. et al. Replicative study of susceptibility to childhood-onset schizophrenia in Kazakhs. Russ J Genet 51, 185–192 (2015). https://doi.org/10.1134/S1022795415020143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415020143

Keywords

Navigation