Skip to main content
Log in

Molecular genetics of development of cornea

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This paper mainly reviews sources discussed in recent years that are devoted to the genetics of corneal development. Genetically caused separation processes of cornea bud and its specification and differentiation are considered. It is shown that mutation disorders in the genes responsible for differentiation of the cornea can lead to different forms of dystrophies and other corneal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shalom-Feuerstein, R., Serror, L., De La Forest Divonne, S., et al., Pluripotent stem cell model reveals essential roles for miR-450b-5p and miR-184 in embryonic corneal lineage specification, Stem Cells, 2012, vol. 30, no. 5, pp. 898–909.

    Article  CAS  PubMed  Google Scholar 

  2. Kamachi, Y., Uchikawa, M., Collignon, J., et al., Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction, Development, 1998, vol. 125, no. 13, pp. 2521–2532.

    CAS  PubMed  Google Scholar 

  3. Bailey, A.P., Bhattacharyya, S., Bronner-Fraser, M., and Streit, A., Lens specification is the ground state of all sensory placodes, from which FGF promotes olfactory identity, Dev. Cell, 2006, vol. 11, no. 4, pp. 505–517.

    Article  CAS  PubMed  Google Scholar 

  4. Sjodal, M., Edlund, T., and Gunhaga, L., Time of exposure to BMP signals plays a key role in the specification of the olfactory and lens placodes ex vivo, Dev. Cell, 2007, vol. 13, no. 1, pp. 141–149.

    Article  PubMed  Google Scholar 

  5. Pandit, T., Jidigam, V.G., and Gunhaga, L., BMP-induced l-Maf regulates subsequent BMP-independent differentiation of primary lens fibre cells, Dev. Dyn., 2011, vol. 240, no. 8, pp. 1917–1928.

    Article  CAS  PubMed  Google Scholar 

  6. Reza, H.M. and Yasuda, K., Lens differentiation and crystallin regulation: a chick model, Int. J. Dev. Biol., 2004, vol. 48, nos. 8–9, pp. 805–817.

    Article  CAS  PubMed  Google Scholar 

  7. Bardot, B., Lecoin, L., Huillard, E., et al., Expression pattern of the drm/gremlin gene during chicken embryonic development, Mech. Dev., 2001, vol. 101, nos. 1–2, pp. 263–265.

    Article  CAS  PubMed  Google Scholar 

  8. Tzahor, E., Kempf, H., Mootoosamy, R.C., et al., Antagonists of Wnt and BMP signaling promote the formation of vertebrate head muscle, Genes Dev., 2003, vol. 17, no. 24, pp. 3087–3099.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Matt, N., Dupe, V., Garnier, J.M., et al., Retinoic aciddependent eye morphogenesis is orchestrated by neural crest cells, Development, 2005, vol. 132, no. 21, pp. 4789–4800.

    Article  CAS  PubMed  Google Scholar 

  10. Shenga, N., Xiea, Z., Wanga, C., et al., Retinoic acid regulates bone morphogenic protein signal duration by promoting the degradation of phosphorylated Smad1, Proc. Natl. Acad. Sci. U.S.A., vol. 107, no. 44, pp. 18886–18891.

  11. Quantock, A.J. and Young, R.D., Development of the corneal stroma, and the collagen-proteoglycan associations that help define its structure and function, Dev. Dyn., 2008, vol. 237, no. 10, pp. 2607–2621.

    Article  PubMed  Google Scholar 

  12. Chang, C.H., Jiang, T.X., Lin, C.M., et al., Distinct Wnt members regulate the hierarchical morphogenesis of skin regions (spinal tract) and individual feathers, Mech. Dev., 2004, vol. 121, no. 2, pp. 157–171.

    Article  CAS  PubMed  Google Scholar 

  13. Kumar, S. and Duester, G., Retinoic acid signaling in perioptic mesenchyme represses Wnt signaling via induction of Pitx2 and Dkk2, Dev. Biol., 2010, vol. 340, no. 1, pp. 67–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Yuan, X., Chen, Z., Yang, Z., et al., Expression pattern of connexins in the corneal and limbal epithelium of a primate, Cornea, 2009, vol. 28, no. 2, pp. 194–199.

    Article  PubMed  Google Scholar 

  15. Collomb, E., Yang, Y., Foriel, S., et al., The corneal epithelium and lens develop independently from a common pool of precursors, Dev. Dyn., 2013, vol. 242, no. 5, pp. 401–413.

    Article  CAS  PubMed  Google Scholar 

  16. Valleix, S., Niel, F., Nedelec, B., et al., Homozygous nonsense mutation in the FOXE3 gene as a cause of congenital primary aphakia in humans, Am. J. Hum. Genet., 2006, vol. 79, no. 2, pp. 358–364.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lwigale, P.Y. and Bronner-Fraser, M., Semaphorin3a/neuropilin-1 signaling acts as a molecular switch regulating neural crest migration during cornea development, Dev. Biol., 2009, vol. 336, no. 2, pp. 257–265.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Norman, B., Davis, J., and Piatigorsky, J., Postnatal gene expression in the normal mouse cornea by sage, Invest. Ophthalmol. Vis. Sci., 2004, vol. 45, no. 2, pp. 429–440.

    Article  PubMed  Google Scholar 

  19. Segev, F., Heon, E., Cole, W.G., et al., Structural abnormalities of the cornea and lid resulting from collagen V mutations, Invest. Ophthalmol. Vis. Sci., 2006, vol. 47, no. 2, pp. 565–573.

    Article  PubMed  Google Scholar 

  20. Sandberg-Lall, M., Hagg, P.O., Wahlstrom, I., and Pihlajaniemi, T., Type XIII collagen is widely expressed in the adult and developing human eye and accentuated in the ciliary muscle, the optic nerve and neural retina, Exp. Eye Res., 2000, vol. 70, no. 4, pp. 401–410.

    Article  CAS  PubMed  Google Scholar 

  21. Young, B.B., Zhang, G., Koch, M., and Birk, D.E., The roles of types XII and XIV collagen in fibrillogenesis and matrix assembly in the developing cornea, J. Cell Biochem., 2002, vol. 87, no. 2, pp. 208–220.

    Article  CAS  PubMed  Google Scholar 

  22. Akimoto, Y., Yamakawa, N., Furukawa, K., et al., Changes in distribution of the long form of type XII collagen during chicken corneal development, J. Histochem. Cytochem., 2002, vol. 50, no. 6, pp. 851–862.

    Article  CAS  PubMed  Google Scholar 

  23. Koch, M., Veit, G., Stricker, S., et al., Expression of type XXIII collagen mRNA and protein, J. Biol. Chem., 2006, vol. 281, no. 30, pp. 21546–21557.

    Article  CAS  PubMed  Google Scholar 

  24. Saika, S., Muragaki, Y., Okada, Y., et al., Sonic hedgehog expression and role in healing corneal epithelium, Invest. Ophthalmol. Vis. Sci., 2004, vol. 45, no. 8, pp. 2577–2585.

    Article  PubMed  Google Scholar 

  25. Lin, H.C., Chang, J.H., Jain, S., et al., Matrilysin cleavage of corneal collagen type XVIII NC1 domain and generation of a 28-kDa fragment, Invest. Ophthalmol. Vis. Sci., 2001, vol. 42, no. 11, pp. 2517–2524.

    CAS  PubMed  Google Scholar 

  26. Guo, X., Hutcheon, A.E.K., Suzanna, A., et al., Morphologic characterization of organized extracellular matrix deposition by ascorbic acid-stimulated human corneal fibroblasts, Invest. Ophthalmol. Vis. Sci., 2007, vol. 48, no. 9, pp. 4050–4060.

    Article  PubMed  Google Scholar 

  27. Chakravarti, S., Zhang, G., Chervoneva, I., et al., Collagen fibril assembly during postnatal development and dysfunctional regulation in the lumican-deficient murine cornea, Dev. Dyn., 2006, vol. 235, no. 9, pp. 2493–2506.

    Article  CAS  PubMed  Google Scholar 

  28. Gealy, E.C., Kerr, B.C., Young, R.D., et al., Differential expression of the keratan sulphate proteoglycan, keratocan, during chick corneal embryogenesis, Histochem. Cell Biol., 2007, vol. 128, no. 6, pp. 551–555.

    Article  CAS  PubMed  Google Scholar 

  29. Carlson, E.C., Lin, M., Liu, et al., Keratocan and lumican regulate neutrophil infiltration and corneal clarity in lipopolysaccharide-induced keratitis by direct interaction with CXCL1, J. Biol. Chem., 2007, vol. 282, no. 49, pp. 35502–35509.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kalamajski, S. and Oldberg, A., Homologous sequence in lumican and fibromodulin leucine-rich repeat 5–7 competes for collagen binding, J. Biol. Chem., 2009, vol. 284, no. 1, pp. 534–539.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, S., Oldberg, A., Chakravarti, S., and Birk, D.E., Fibromodulin regulates collagen fibrillogenesis during peripheral corneal development, Dev. Dyn., 2010, vol. 239, no. 3, pp. 844–854.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Tillgren, V., Onnerfjord, P., and Heinegard, D., The tyrosine sulfate rich domains of the LRR-proteins fibromodulin and osteoadherin bind motifs of basic clusters in a variety of heparin binding proteins including bioactive factors, J. Biol. Chem., 2009, vol. 284, no. 42, pp. 28543–28553.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Zhang, Y., Conrad, A.H., Tasheva, E.S., et al., Detection and quantification of sulfated disaccharides from keratan sulfate and chondroitin/dermatan sulfate during chick corneal development by ESI-MS/MS, Invest. Ophthalmol. Vis. Sci., 2005, vol. 46, no. 5, pp. 1604–1614.

    Article  PubMed  Google Scholar 

  34. Young, R.D., Tudor, D., Hayes, A.J., et al., Atypical composition and ultrastructure of proteoglycans in the mouse corneal stroma, Invest. Ophthalmol. Vis. Sci., 2005, vol. 46, no. 6, pp. 1973–1978.

    Article  PubMed  Google Scholar 

  35. Chakravarti, S., Petroll, W.M., Hassell, J.R., et al., Corneal opacity in lumican-null mice: defects in collagen fibril structure and packing in the posterior stroma, Invest. Ophthalmol. Vis. Sci., 2000, vol. 41, no. 11, pp. 3365–3373.

    CAS  PubMed  Google Scholar 

  36. Jester, J.V., Corneal crystallins and the development of cellular transparency, Semin. Cell Dev. Biol., 2008, vol. 19, no. 2, pp. 82–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ren, S., Liu, T., Jia, C., et al., Physiological expression of lens α-, β-, and γ-crystallins in murine and human corneas, Mol. Vis., 2010, vol. 16, no. 12, pp. 2745–2752.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Kwiatkowski, S., Munjaa, R.P., Lee, T., et al., Expression of proand anti-angiogenic factors during the formation of the periocular vasculature and development of the avian cornea, Dev. Dyn., 2013, vol. 242, no. 6, pp. 738–751.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Franzco, A.L.V., Corneal dystrophies and genetics in the International Committee for Classification of Corneal Dystrophies era: a review, Clin. Exp. Ophthalmol., 2014, vol. 42, no. 1, pp. 4–12.

    Article  Google Scholar 

  40. Aldave, A.J., Han, J., and Frausto, R.F., Genetics of the corneal endothelial dystrophies: an evidence-based review, Clin. Genet., 2013, vol. 84, no. 2, pp. 109–119.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Mglinets.

Additional information

Original Russian Text © V.A. Mglinets, 2015, published in Genetika, 2015, Vol. 51, No. 1, pp. 5–13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mglinets, V.A. Molecular genetics of development of cornea. Russ J Genet 51, 1–8 (2015). https://doi.org/10.1134/S1022795414110088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414110088

Keywords

Navigation