Advertisement

Russian Journal of Genetics

, Volume 50, Issue 10, pp 1060–1074 | Cite as

Differentiation of tortoises of the genera Testudo and Agrionemys (Testudinidae) based on the polymorphism of nuclear and mitochondrial markers

  • V. A. Vasilyev
  • A. V. Korsunenko
  • S. L. Pereshkolnik
  • L. F. Mazanaeva
  • A. A. Bannikova
  • D. A. Bondarenko
  • E. A. Peregontsev
  • S. K. Semyenova
Animal Genetics

Abstract

Based on polymorphism of the 12S rRNA gene and RAPD markers, differentiation of 122 tortoise individuals belonging to the three species of genus Testudo (T. kleinmanni, T. marginata, and T. graeca), six subspecies of T. graeca (T. g. nikolskii, T. g. pallasi, T. g. armeniaca, T. g. zarudnyi, T. g. terrestris, T. g. ibera), and two subspecies of the Central Asian tortoise Agrionenemys horsfieldii (A. h. horsfieldii, A. h. kazakhstanica) was performed. For comparison, 32 known sequences of 12S rRNA gene (392 bp) from tortoises of the two genera inhabiting the territories of Europe, Asia, and Africa were used. In the populations of A. horsfieldii, a total of six haplotypes, including three newly described variants, were identified. In the examined tortoises of the genus Testudo, eleven 12S rRNA haplotypes were identified. One new haplotype was detected in T. kleinmanni. Among the eight subspecies of T. graeca, eight haplotypes were identified, with four newly described ones. The reported RAPD markers generally supported the reconstructions obtained with the use of the mitochondrial marker. Similarly to the 12S rRNA-based reconstructions, two independent clusters included representatives of the two genera, Agrionemys and Testudio. Among the latter, representatives of T. marginata and T. kleinmanni, as well as T. graeca, with high statistical support values, formed two reciprocally monophyletic groups. Compared to the mitochondrial markers, RAPDs more statistically significantly discriminated the sample of T. g. terrestris and the four subspecies, T. g. ibera, T. g. armeniaca, T. g. pallasi, and T. g. nikolskii. In almost all cases except the representatives of T. g. ibera, the representatives of each of four subspecies formed individual subclusters. The geographical haplotype distribution patterns and possible evolutionary scenario of the origin and dispersal of tortoises of the two genera are discussed.

Keywords

RAPD Marker ISSR Marker Mitochondrial Marker Parsimonious Network Geographical Distribution Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gilbert, S.F. and Corfe, I., Turtle origins: picking up speed, Dev. Cell, 2013, vol. 25, pp. 327–328.CrossRefGoogle Scholar
  2. 2.
    Bannikov, A.G., Darevskii, I.S., Ishchenko, V.G., et al., Opredelitel’ zemnovodnykh i presmykayushchikhsya fauny SSSR (A Key to Amphibians and Reptiles of the Soviet Union fauna), Moscow: Prosveshchenie, 1977.Google Scholar
  3. 3.
    Anan’eva, N.B., Borkin, L.Ya., Darevskii, I.S., et al., Amphibians and Reptiles, in Entsiklopediya prirody Rossii (Encyclopedia of Russian Nature), Moscow: ABF, 1998.Google Scholar
  4. 4.
    Fritz, U. and Havas, P., Checklist of chelonians of the world, Vertebr. Zool., 2007, no. 57, pp. 149–368.Google Scholar
  5. 5.
    van Dijk, P.P., Corti, C., Mellado, V.P., et al., Testudo graeca, IUCN 2013: IUCN Red List of Threatened Species. Version 2013.1. http://www.iucnredlist.org
  6. 6.
    Lapparent de Broin, F., Bour, R., Parham, F., et al., Eurotestudo, a new genus for the species Testudo her- manni Gmelin, 1789 (Chelonii, Testudinidae), C. R. Palevol., 2006, vol. 5, pp. 803–811.CrossRefGoogle Scholar
  7. 7.
    Darevskii, I.S. and Orlov, N.L., Redkie i ischezayushchie zhivotnye: zemnovodnye i presmykayushchiesya (Rare and Endangered Animals: Amphibians and Reptiles), Sokolov, V.E., Ed., Moscow: Vysshaya Shkola, 1988.Google Scholar
  8. 8.
    Inozemtsev, A.A. and Pereshkolnik, S.L., Status and conservation prospects of Testudo graeca L. inhabiting the Black Sea coast of the Caucasus, Chelonian Conserv. Biol., 1994, vol. 1, no. 2, pp. 151–158.Google Scholar
  9. 9.
    Fritz, U., Bischoff, W., Martens, H., et al., Variabilität syrisgher Landschildkröten (Testudo graeca) sowie zur Systematik und Zoogeographie im Nahen Osten und in Nordafrika, Herpetofauna, 1996, no. 18, pp. 5–14.Google Scholar
  10. 10.
    Perälä, J., Morphological variation among Middle Eastern Testudo graeca L., 1758 (sensu lato), with a focus on taxonomy, Chelonii, 2000, vol. 3, pp. 78–108.Google Scholar
  11. 11.
    Pieh, A. and Perälä, J., Variabilität von Testudo graeca Linnaeus, 1758 im Östlichen Nordafrika mit Beschreibung eines neuen Taxons von der Cyrenaika (Nordostlibyen), Hepertozoa, 2002, no. 15, pp. 3–28.Google Scholar
  12. 12.
    Pieh, A. and Perälä, J., Variabilität der maurischen Landschildkröten (Testudo graeca Linnaeus, 1758 Komplex) im zentralen und nordwestlichen Marokko mit Beschreibung zweier neuer Taxa, Hepertozoa, 2004, no. 17, pp. 29–47.Google Scholar
  13. 13.
    Fritz, U. Hundsdörfer, A., Široký, P., et al., Phenotypic plasticity leads to incongruence between morphology-based taxonomy and genetic differentiation in western Palaearctic tortoises (Testudo graeca complex; Testunides, Testudinidae), Amphibia-Reptilia, 2007, vol. 28, pp. 97–121.CrossRefGoogle Scholar
  14. 14.
    Fritz, U.D., Harris, D.J., Fahd, S., et al., Mitochondrial phylogeography of Testudo graeca in the western Mediterranean: old complex divergence in North Africa and recent arrival in Europe, Amphibia-Reptilia, 2009, vol. 30, pp. 63–80.CrossRefGoogle Scholar
  15. 15.
    Chkhikvadze, V.M., On the systematic position of modern terrestrial tortoises from Central Asia and Kazakhstan, Izv. Akad. Nauk Gruz. SSR, Ser. Biol., 1988, vol. 14, no. 2, pp. 110–113.Google Scholar
  16. 16.
    Chkhikvadze, V.M., Amiranashvili, N.G., and Ataev, Ch., A new subspecies of tortoises from the North-Western Turkmenistan, Izv. Akad. Nauk Turkm. SSR, Ser. Biol. Nauk, 1990, no. 1, pp. 72–75.Google Scholar
  17. 17.
    Chkhivadze, V.M., Brushko, Z.K., and Kubykin, R.A., A brief overview of the systematics of the Central Asian tortoises (Testudinidae: Agrionemys) and the shell mobile zones in this group of tortoises, Selevinia, 2008, pp. 100–104.Google Scholar
  18. 18.
    Chkhikvadze, V., Annotated catalogue of the Paleogene, Neogene and modern tortoises of Northern Eurasia, Georgian Natl. Mus.: Proc. Nat. Prehist. Sect., 2010, no. 2, pp. 96–113.Google Scholar
  19. 19.
    Chkhikvadze, V.M., Ataev, Ch., and Shammakov, S., New taxa of the Central Asian tortoises (Testudinidae: Agrionemys bogdanovi and A. kazachstanica kuznetzovi), Probl. osvoeniya pustyn, 2009, no. 1-2, pp. 49–54.Google Scholar
  20. 20.
    Bondarenko, D.A and Duisebaeva, T.N., Central Asian turtle, Agrionemys horsfieldii (Gray, 1844), in Kazakhstan (its distribution, habitat division, and population density), Sovrem. Gerpetol., 2012, vol. 12, nos. 1-2, pp. 3–26.Google Scholar
  21. 21.
    Alvarez, Y., Mateo, J., Andreu, A., et al., Mitochondrial DNA haplotyping of Testudo graeca on both continental sides of the straits of Gibraltar, J. Hered., 2000, vol. 91, no. 1, pp. 39–41.PubMedCrossRefGoogle Scholar
  22. 22.
    Harris, D., Znari, M., Mas, J., et al., Genetic variation in Testudo graeca from Morocco estimated using 12S rRNA sequencing, Rev. Esp. Herpetol., 2003, vol. 17, pp. 5–9.Google Scholar
  23. 23.
    Van der Kuyl, A., Ballasina, D., Dekker, J., et al., Phylogenetic relationships among the species of genus Testudo (Testudines: Testudinidae) inferred from mitochondrial 12S rRNA gene sequences, Mol. Phylogenet. Evol., 2002, vol. 22, no. 2, pp. 174–183.PubMedCrossRefGoogle Scholar
  24. 24.
    Van der Kuyl, A., Ballasina, D., and Zorgdrager, F., Mitochondrial haplotype diversity in the tortoise species Testudo graeca from North Africa and Middle East, BMC Evol. Biol., 2005, vol. 29, no. 5, pp. 1–8.Google Scholar
  25. 25.
    Parham, J., Türkozan, O., and Stuart, B., Genetic evidence for premature taxonomic inflation in Middle Eastern tortoises, Proc. Calif. Acad. Sci., 2006, vol. 57, no. 3, pp. 955–964.Google Scholar
  26. 26.
    Vasilyev, V.A., Bondarenko, D.A., Peregontsev, E.A., et al., Polymorphism of the 12S rRNA gene and phylogeography of the Central Asian tortoises Agrionemys horsfieldii Gray, 1844, Russ. J. Genet., 2008, vol. 44, no. 6, pp. 682–685.CrossRefGoogle Scholar
  27. 27.
    Fritz, U., Auer, M., Chirikova, M.A., et al., Mitochondrial diversity of the widespread Central Asian steppe tortoise (Testudo horsfieldii Gray, 1844): implications for taxonomy and relocation of confiscated tortoises, Amphibia-Reptilia, 2009, vol. 30, pp. 245–257.CrossRefGoogle Scholar
  28. 28.
    Semyenova, S.K., Korsunenko, A.V., Vasilyev, V.A., et al., RAPD variation in Mediterranean turtle Testudo graeca L. (Testudinidae), Russ. J. Genet., 2004, vol. 40, no. 12, pp. 1348–1355.CrossRefGoogle Scholar
  29. 29.
    Korsunenko, A., Vasilyev, V., Pereshkolnik, S., et al., DNA polymorphism and genetic differentiation of Testudo graeca L., Russ. J. Herpetol., 2005, suppl. 12, pp. 40–42.Google Scholar
  30. 30.
    Arif, I.A. and Khan, H.A., Molecular markers for biodiversity analysis of wildlife animals: a brief review, Anim. Biodiversity Conserv., 2009, vol. 32, pp. 9–17.Google Scholar
  31. 31.
    Kocher, T.D., Thomas, W.K., Meyer, A., et al., Dynamics of mitochondrial DNA evolution in animals: amplifications and sequencing with conserved primers, Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, pp. 6196–6200.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Rogstad, S.H. and Pelikan, S., GELSTATS: a computer program for population genetics analyses using VNTR multilocus probe data, BioTechniques, 1996, vol. 21, pp. 1128–1131.PubMedGoogle Scholar
  33. 33.
    Van der Peer, Y. and De Wachter, R., TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment, Comput. Appl. Biosci., 1994, vol. 10, pp. 569–570.PubMedGoogle Scholar
  34. 34.
    Kumar, S., Tamura, K., and Nei, M., MEGA5: integrated software for molecular evolutionary genetics analysis and sequence alignment, Brief. Bioinform., 2004, vol. 5, pp. 150–163.PubMedCrossRefGoogle Scholar
  35. 35.
    Clement, M., Posada, D., and Crandall, K., TCS: a computer program to estimate gene genealogies, Mol. Ecol., 2000, vol. 9, pp. 1657–1659. http://bioag.byu.edu/zoology/crandall-lab/programs.htm PubMedCrossRefGoogle Scholar
  36. 36.
    Kirsche, W., Bastardierung von Testudo horsfieldii Gray und Testudo h. hermanni Gmelin, Amphibia-Reptilia, 1984, vol. 5, pp. 311–322.CrossRefGoogle Scholar
  37. 37.
    Chkhikvadze, B.M., On the systematic position of some fossil tortoises of Asia, Tr. Tbilisi Gos. Pedagog. Univ., 2001, vol. 10, pp. 235–240.Google Scholar
  38. 38.
    Perälä, J., Biodiversity in relatively neglected taxa of Testudo L. 1758 s.l., Chelonii, 2001, vol. 3, pp. 40–52.Google Scholar
  39. 39.
    Kolesnikov, V.P., Zhizhchenko, B.P., and Eberzin, A.G., Stratigrafiya SSSR (Stratigraphy of the Soviet Union), vol. 12: Neogen SSSR (Neogene of the Soviet Union), Moscow, 1940.Google Scholar
  40. 40.
    Syromyatnikova, E.V., Danilov, I.G., Tesakov, A.S., et al., New materials on fossil turtles from the location Nizhniy Vodyanoy (Rostov oblast, Russia, the Upper Miocene), in Otchetnaya nauchnaya sessiya po itogam raboty 2010 g (Summary Reporting Scientific Session on the 2010 Results) (Proc. Conf.), St. Petersburg: Zool. Inst. Ross. Akad. Nauk, 2011, pp. 25–27.Google Scholar
  41. 41.
    Crumly, C., An annotated checklist of the fossil tortoises of China and Mongolia, Proc. Biol. Soc. Wash., 1983, vol. 96, pp. 567–580.Google Scholar
  42. 42.
    Chkhikvadze, B.M. and Bakradze, M.A., A new subspecies of terrestrial tortoise from Dagestan, Tr. Inst. Zool. (Tbilisi), 2002, vol. 21, pp. 276–279.Google Scholar
  43. 43.
    Chkhikvadze, V.M. and Tuniev, B.S. On systematic status of the contemporary land tortoise of western part of the South Caucasus, Soobshch. Akad. Nauk Gruz. SSR, 1986, vol. 124, no. 3, pp. 617–620.Google Scholar
  44. 44.
    Pereshkol’nik, S.L. and Leont’eva, O.A., Testudo zarudnyi-an ancient relict species in the eastern part of the range of Testudo graeca complex, in Sovremennye problemy biologicheskoi evolyutsii (Modern Issues in Biological Evolution) (Proc. 2nd All-Russian Conf.), Moscow, 2014 (in press).Google Scholar
  45. 45.
    Mashkaryan, V., Vamberger, M., Arakelyan, M., et al., Gene flow among deeply divergent mtDNA lineages of Testudo graeca (Linnaeus, 1758) in Transcaucasia, Amphibia-Reptilia, 2013. doi 10.1163/15685381-00002895Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • V. A. Vasilyev
    • 1
  • A. V. Korsunenko
    • 1
  • S. L. Pereshkolnik
    • 2
  • L. F. Mazanaeva
    • 3
  • A. A. Bannikova
    • 4
  • D. A. Bondarenko
    • 5
  • E. A. Peregontsev
    • 6
  • S. K. Semyenova
    • 1
  1. 1.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Moscow ZooMoscowRussia
  3. 3.Dagestan State UniversityMakhachkalathe Republic of Dagestan, Russia
  4. 4.Department of Vertebrate ZoologyLomonosov Moscow State UniversityMoscowRussia
  5. 5.The Head Center of the Hygiene and Epidemiology of the Federal Medical and Biological AgencyMoscowRussia
  6. 6.DAVBIONAZORAT at the State Committee of Nature ProtectionTashkentUzbekistan

Personalised recommendations