Skip to main content
Log in

Somatic genome variations in vascular tissues and peripheral blood leukocytes in patients with atherosclerosis

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The first data on the existence of multiple genomic rearrangements, such as copy number variation (CNV) and copy neutral loss of heterozygosity, in vascular tissues and peripheral blood leukocytes from patients with atherosclerosis, are presented. Compared to internal mammary arteries and peripheral blood leukocytes, right coronary arteries in the atherosclerotic plaque area presented with a higher CNV length and number of genes located in their vicinity. In each of the patients, 6–16% of CNVs were common to the three types of tissues examined. Therefore, most of the copy number variations in the tissues affected by atherosclerosis (from 68 to 91% in each of the patients) were of somatic origin. The gains in 3p21.31 (CACNA2D2), 7q32.1 (FLNC), 19p13.3 (C19orf29, PIP5K1C), and 21q22.3 (COL6A1) were detected in vascular tissues but not in peripheral blood leukocytes. Moreover, the gain in 7p15.2 (SKAP2), detected in the patients with atherosclerosis, did not overlap with any CNV regions currently reported in The Database of Genomic Variants. The loss of heterozygosity in 12 out of 13 chromosomal regions was copy neutral and covered tumor suppressor genes (SFRP1, CEBPD, RB1CC1, DIRAS3, TUSC3, and ZDHHC2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gottlieb, B., Beitel, L.K., Alvarado, C., et al., Selection and mutation in the “new” genetics: an emerging hypothesis, Hum. Genet., 2010, vol. 127, no. 5, pp. 491–501.

    Article  CAS  PubMed  Google Scholar 

  2. Forsberg, L.A., Absher, D., and Dumanski, J.P., Nonheritable genetics of human disease: spotlight on postzygotic genetic variation acquired during lifetime, Postgrad. Med. J., 2013, vol. 89, no. 1053, pp. 417–426.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Happle, R., What is paradominant inheritance?, J. Med. Genet., 2009, vol. 46, no. 9, p. 648.

    Article  CAS  PubMed  Google Scholar 

  4. Limaye, N., Boon, L.M., and Vikkula, M., From germline towards somatic mutations in the pathophysiology of vascular anomalies, Hum. Mol. Genet., 2009, vol. 18, no. R1, pp. R65–R74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Eichler, E.E., Flint, J., Gibson, G., et al., Missing heritability and strategies for finding the underlying causes of complex disease, Nat. Rev. Genet., 2010, vol. 11, no. 6, pp. 446–450.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Pollex, R.L. and Hegele, R.A., Copy number variation in the human genome and its implications for cardiovascular disease, Circulation, 2007, vol. 115, no. 24, pp. 3130–3138.

    Article  PubMed  Google Scholar 

  7. Myocardial Infarction Genetics Consortium, Kathiresan, S., Voight, B.F., et al., Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants, Nat. Genet., 2009, vol. 41, no. 3, pp. 334–341.

    Article  CAS  PubMed  Google Scholar 

  8. Wellcome Trust Case Control Consortium, Craddock, N., Hurles, M.E., et al., Genome-wide association study of CNVS in 16,000 cases of eight common diseases and 3.000 shared controls, Nature, 2010, vol. 464, no. 7289, pp. 713–720.

    Article  CAS  PubMed  Google Scholar 

  9. Gancheva, K., Postadjian, A., Brazma, D., et al., Copy number variants: distribution in patients with coronary atherosclerosis, Biotechnol. Biotec. Eq., 2009, vol. 23, no. 1, pp. 1095–1100.

    Article  CAS  Google Scholar 

  10. Shia, W.C., Ku, T.H., Tsao, Y.M., et al., Genetic copy number variants in myocardial infarction patients with hyperlipidemia, BMC Genomics, 2011, vol. 12,suppl. 3, p. S23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. De Flora, S. and Izzotti, A., Mutagenesis and cardiovascular diseases molecular mechanisms, risk factors, and protective factors, Mutat. Res., 2007, vol. 621, nos. 1–2, pp. 5–17.

    Article  PubMed  Google Scholar 

  12. Vanni, R., Cossu, L., and Licheri, S., Atherosclerotic plaque as a benign tumor?, Cancer Genet. Cytogenet., 1990, vol. 47, no. 2, pp. 273–274.

    Article  CAS  PubMed  Google Scholar 

  13. Casalone, R., Granata, P., Minelli, E., et al., Cytogenetic analysis reveals clonal proliferation of smooth muscle cells in atherosclerotic plaques, Hum. Genet., 1991, vol. 87, no. 2, pp. 139–143.

    Article  CAS  PubMed  Google Scholar 

  14. Matturri, L., Cazzullo, A., Turconi, P., et al., Chromosomal alterations in atherosclerotic plaques, Atherosclerosis, 2001, vol. 154, no. 3, pp. 755–761.

    Article  CAS  PubMed  Google Scholar 

  15. Hatzistamou, J., Kiaris, H., Ergazaki, M., et al., Loss of heterozygosity and microsatellite instability in human atherosclerotic plaques, Biochem. Biophys. Res. Commun., 1996, vol. 225, no. 1, pp. 186–190.

    Article  CAS  PubMed  Google Scholar 

  16. Flouris, G.A., Arvanitis, D.A., Parissis, J.T., et al., Loss of heterozygosity in DNA mismatch repair genes in human atherosclerotic plaques, Mol. Cell Biol. Res. Commun., 2000, vol. 4, no. 1, pp. 62–65.

    Article  CAS  PubMed  Google Scholar 

  17. Miniati, P., Sourvinos, G., Michalodimitrakis, M., et al., Loss of heterozygosity on chromosomes 1, 2, 8, 9, and 17 in cerebral atherosclerotic plaques, Int. J. Biol. Markers, 2001, vol. 16, no. 3, pp. 167–171.

    CAS  PubMed  Google Scholar 

  18. Grati, F.R., Ghilardi, G., Sirchia, S.M., et al., Loss of heterozygosity of the NOS3 dinucleotide repeat marker in atherosclerotic plaques of human carotid arteries, Atherosclerosis, 2001, vol. 159, no. 2, pp. 261–267.

    Article  CAS  PubMed  Google Scholar 

  19. Arvanitis, D.A., Flouris, G.A., and Spandidos, D.A., Genomic rearrangements on VCAM1, SELE, APEG1 and AIF1 loci in atherosclerosis, J. Cell Mol. Med., 2005, vol. 9, no. 1, pp. 153–159.

    Article  CAS  PubMed  Google Scholar 

  20. Sambrook, J.J. and Russel, D.W., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 2001, vol. 3, 3rd ed., pp. 6.1–6.62.

    Google Scholar 

  21. Database of Genomic Variants (DGV). http://dgv.tcag.ca/dgv/app/home. Cited September 2013.

  22. NCBI RefSeq. http://www.ncbi.nlm.nih.gov/refseq/. Cited September 2013.

  23. TSGene: Tumor Supressor Gene Database. http://bioinfo.mc.vanderbilt.edu/TSGene/index.html/. Cited September 2013.

  24. Geneimprint Database. http://www.geneimprint.com/site/genes-by-species/. Cited September 2013.

  25. Mitra, S., Mazumder, I.D., Basu, P.S., et al., Alterations of RASSF1A in premalignant cervical lesions: clinical and prognostic significance, Mol. Carcinog., 2012, vol. 51, no. 9, pp. 723–733.

    Article  CAS  PubMed  Google Scholar 

  26. Shi, J., Zhang, G., Yao, D., et al., Prognostic significance of aberrant gene methylation in gastric cancer, Am. J. Cancer Res., 2012, vol. 2, no. 1, pp. 116–129.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Fuster, J.J., Fernandez, P., Gonzalez-Navarro, H., et al., Control of cell proliferation in atherosclerosis: insights from animal models and human studies, Cardiovasc. Res., 2010, vol. 86, no. 2, pp. 254–264.

    Article  CAS  PubMed  Google Scholar 

  28. Xu, W., Wang, P., Petri, B., et al., Integrin-induced PIP5K1C kinase polarization regulates neutrophil polarization, directionality, and in vivo infiltration, Immunity, 2010, vol. 33, no. 3, pp. 340–350.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Schnoor, M., Cullen, P., Lorkowski, J., et al., Production of type VI collagen by human macrophages: a new dimension in macrophage functional heterogeneity, J. Immunol., 2008, vol. 180, no. 8, pp. 5707–5719.

    Article  CAS  PubMed  Google Scholar 

  30. Suh, J.H., Yoon, J.S., Kwon, J.B., et al., Identification of genomic aberrations by array comparative genomic hybridization in patients with aortic dissections, Korean J. Thorac. Cardiovasc. Surg., 2011, vol. 44, no. 2, pp. 123–130.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Choi, J.S., Kim, S.R., and Jeon, Y.W., et al., Identification of DNA copy number aberrations by array comparative genomic hybridization in patients with ruptured intracranial aneurysms, J. Clin. Neurosci., 2009, vol. 16, no. 2, pp. 295–301.

    Article  CAS  PubMed  Google Scholar 

  32. Alenghat, F.J., Baca, Q.J., Rubin, N.T., et al., Macrophages require Skap2 and Sirpα for integrin-stimulated cytoskeletal rearrangement, J. Cell Sci., 2012, vol. 125, no. 22, pp. 5535–5545.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Harada, T., Chelala, C., Bhakta, V., et al., Genomewide DNA copy number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays, Oncogene, 2008, vol. 27, no. 13, pp. 1951–1960.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Shimamura, S., Sasaki, K., and Tanaka, M., The Src substrate SKAP2 regulates actin assembly by interacting with WAVE2 and cortactin proteins, J. Biol. Chem., 2013, vol. 288, no. 2, pp. 1171–1183.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Dufourcq, P., Leroux, L., Ezan, J., et al., Regulation of endothelial cell cytoskeletal reorganization by a secreted frizzled-related protein-1 and frizzled 4- and frizzled 7-dependent pathway: role in neovessel formation, Am. J. Pathol., 2008, vol. 172, no. 1, pp. 37–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Sekine, O., Nishio, Y., Egawa, K., et al., Insulin activates CCAAT/enhancer binding proteins and proinflammatory gene expression through the phosphatidylinositol 3-kinase pathway in vascular smooth muscle cells, J. Biol. Chem., 2002, vol. 277, pp. 36631–36639.

    Article  CAS  PubMed  Google Scholar 

  37. O’Keefe, C., McDevitt, M.A., and Maciejewski, J.P., Copy neutral loss of heterozygosity: a novel chromosomal lesion in myeloid malignancies, Blood, 2010, vol. 115, no. 14, pp. 2731–2739.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Nazarenko, S., Sazhenova, E., Baumer, A., and Schinzel, A., Segmental maternal heretodisomy of the proximal part of chromosome 15 in an infant with Prader-Willi syndrome, Eur. J. Hum. Genet., 2004, vol. 12, no. 5, pp. 411–414.

    Article  CAS  PubMed  Google Scholar 

  39. Jacobs, K.B., Yeager, M., Zhou, W., et al., Detectable clonal mosaicism and its relationship to aging and cancer, Nat. Genet., 2012, vol. 44, no. 6, pp. 651–658.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Laurie, C.C., Laurie, C.A., Rice, K., et al., Detectable clonal mosaicism from birth to old age and its relationship to cancer, Nat. Genet., 2012, vol. 44, no. 6, pp. 642–650.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. O’Huallachain, M., Karczewski, K.J., Weissman, S.M., et al., Extensive genetic variation in somatic human tissues, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 44, pp. 18018–18023.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Piotrowski, A., Bruder, C.E., Andersson, R., et al., Somatic mosaicism for copy number variation in differentiated human tissues, Hum. Mutat., 2008, vol. 29, no. 9, pp. 1118–1124.

    Article  PubMed  Google Scholar 

  43. Shaffer, L.G., McGowan-Jordan, J., and Schmid, M., ISCN (2013): An International System for Human Cytogenetic Nomenclature, Basel: S. Karger, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sleptsov.

Additional information

Original Russian Text © A.A. Sleptsov, M.S. Nazarenko, I.N. Lebedev, N.A. Skryabin, A.V. Frolov, V.A. Popov, O.L. Barbarash, L.S. Barbarash, V.P. Puzyrev, 2014, published in Genetika, 2014, Vol. 50, No. 8, pp. 986–995.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sleptsov, A.A., Nazarenko, M.S., Lebedev, I.N. et al. Somatic genome variations in vascular tissues and peripheral blood leukocytes in patients with atherosclerosis. Russ J Genet 50, 870–878 (2014). https://doi.org/10.1134/S1022795414080080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414080080

Keywords

Navigation