Skip to main content
Log in

Bacterial genome evolution in superspecies systems: An approach to the reconstruction of symbiogenesis processes

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Bacteria form a broad spectrum of symbioses with eukaryotes. This permits reconstruction of the symbiogenesis processes providing the transformation of free-living microorganisms into cellular organelles. In ecologically (conditionally) obligate symbioses, an increase in the size and complexity of the bacterial genome structure was observed. This was associated with segregation of the regions controlling symbiosis into gene clusters, islands, and plasmids. In genetically (strictly) obligate symbioses, a reduction of “nonsymbiotic” regions of microbial genome occurs, which could begin from genes encoding metabolic and regulatory functions. It is extended towards genes encoding template processes. Conditionally obligate symbioses are characterised by the activation of horizontal gene transfer between various forms of microsymbionts, while for strictly obligate intracellular symbioses an activation of endo-symbiotic gene transfer between microsymbionts and their hosts was detected. The latter is responsible for bacterial transition from the functional (based on gene cross-regulation) to structural (based on recombination) genetic integration with hosts, which later could be followed by the complete assimilation of microbial genomes. In α-proteobacteria this evolutionary pathway could result in the formation of cellular organelles that are deficient in their own genomes but capable of preserving proteomic and cytological traits as a result of the gene-product import synthesized in cytosol (hydrogenosomes and mitosomes). The symbiogenic evolution of cyanobacteria could result in the loss of the plasmids generated from them, while the host maintains a significant part of their genome in nuclear chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Douglas, A.E., Symbiotic Interactions, Oxford: Oxford Univ. Press, 1994.

    Google Scholar 

  2. Seckbach, J., Symbiosis: Mechanisms and Model Systems, Dordrecht: Kluwer, 2002.

    Book  Google Scholar 

  3. Franche, C., Lindstrom, K., and Elmerich, C., Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants, Plant Soil, 2009, vol. 321, pp. 35–59.

    Article  CAS  Google Scholar 

  4. McCullen, C.A. and Binns, A.N., Agrobacterium tumefaciens and plant cell interactions and activities required for inter-kingdom macromolecular transfer, Annu. Rev. Cell Dev. Biol., 2006, vol. 22, pp. 101–127.

    Article  CAS  PubMed  Google Scholar 

  5. Halling, S.M., Peterson-Burch, B.D., Bricker, B.J., et al., Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis, J. Bacteriol., 2005, vol. 187, pp. 2715–2726.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kenri, T., Horino, A., Matsui, M., et al., Complete genome sequence of Mycoplasma pneumonia type 2a strain 309, isolated in Japan, J. Bacteriol., 2012, vol. 194, pp. 1253–1254.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Baldo, L., Bordenstein, S., Wernegreen, J.J., and Werren, J.H., Widespread recombination throughout Wolbachia genomes, Mol. Biol. Evol., 2006, vol. 23, pp. 437–449.

    Article  CAS  PubMed  Google Scholar 

  8. Meeks, J.C. and Elhai, J., Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states, Microbiol. Molec. Biol. Rev., 2002, vol. 66, pp. 94–121.

    Article  CAS  Google Scholar 

  9. Martin, W., Gene transfer from organelles to the nucleus: frequent and in big chunks, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 8612–8614.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. van der Giezen, M. and Tovar, J., Degenerate mitochondria, EMBO Rep., 2005, vol. 6, pp. 525–530.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Margulis, L., Symbiosis in Cell Evolution: Life and Its Environment on the Early Earth, San Francisco: Freeman, 1981.

    Google Scholar 

  12. Merezhkovskii, K.S., Teoriya dvukh plazm kak osnova simbiogenezisa, novogo ucheniya o proiskhozhdenii organizmov (The Theory of Two Plasms as Foundation of Symbiogenesis, New Doctrine on the Origin of Organisms), Kazan: Izd. Imp. Univ., 1909.

    Google Scholar 

  13. Douglas, A.E., Parallels and contrasts between symbiotic bacteria and bacterial-derived organelles: evidence from Buchnera, the bacterial symbiont of aphids, FEMS Microbiol. Ecol., 1997, vol. 24, pp. 1–9.

    Article  CAS  Google Scholar 

  14. Provorov, N.A., Molecular basis of symbiogenic evolution: from free-living bacteria towards organelles, Zh. Obshch. Biol., 2005, vol. 66, pp. 371–388.

    CAS  PubMed  Google Scholar 

  15. Li, D.H., Liu, Y.D., and Song, L.R., Hormogonia mass differentiation from Nostoc sphaeroides Kutz. (cyanobacterium) and the comparison of structural characteristics between hormogonia and vegetative filaments, Physiol. Res., 2001, vol. 49, pp. 81–87.

    Google Scholar 

  16. Parsons, R., Nodule infection and regulation in the Gunnera-Nostoc symbiosis, Proc. R. Irish Acad., 2002, vol. 102B, pp. 41–43.

    Article  Google Scholar 

  17. Martínez-Romero, E., Coevolution in Rhizobium- legume symbiosis?, DNA Cell Biol., 2009, vol. 28, pp. 361–370.

    Article  PubMed  Google Scholar 

  18. Hirsch, A.M., Lum, M.R., and Downie, J.A., What makes the rhizobia-legume symbiosis so special?, Plant Physiol., 2001, vol. 127, pp. 1484–1492.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Pini, F., Galardini, M., Bazzicalupo, M., and Mengoni, A., Plant-bacteria association and symbiosis: are there common genomic traits in Alphaproteobacteria?, Genes, 2011, vol. 2, pp. 1017–1032.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Provorov, N.A., Tsyganova, A.V., Brewin, N.J., et al., Evolution of symbiotic bacteria within the extra- and intra-cellular plant compartments: experimental evidence and mathematical simulation (mini-review), Symbiosis, 2012, vol. 58, pp. 39–50.

    Article  Google Scholar 

  21. Downie, J.A. and Young, J.P.W., The ABC of symbiosis, Nature, 2001, vol. 412, pp. 597–598.

    Article  CAS  PubMed  Google Scholar 

  22. MacLean, A.M., Finan, T.M., and Sadowsky, M.J., Genomes of symbiotic nitrogen-fixing bacteria of legumes, Plant Physiol., 2007, vol. 144, pp. 615–622.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Oono, R., Schmitt, I., Sprent, J.I., and Denison, R.F., Multiple evolutionary origins of legume traits leading to extreme rhizobial differentiation, New Phytol., 2010, vol. 187, pp. 508–520.

    Article  CAS  PubMed  Google Scholar 

  24. Mergaert, P., Uchiumi, T., Alunni, B., et al., Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, pp. 5230–5235.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. van de Velde, W., Zehirov, G., Szatmari, A., et al., Plant peptides govern terminal differentiation of bacteria in symbiosis, Science, 2010, vol. 327, pp. 1122–1126.

    Article  PubMed  Google Scholar 

  26. Stephens, C. and Murray, W., Pathogen evolution: how good bacteria go bad, Curr. Biol., 2001, vol. 11, pp. 53–56.

    Article  Google Scholar 

  27. Russell, C.W., Bouvaine, S., Newell, P.D., and Douglas, A.E., Shared metabolic pathways in a coevolved insect-bacterial symbiosis, Appl. Environ. Microbiol., 2013, vol. 79, pp. 6117–6123.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bagirova, S.F., Dzhavakhiya, V.G., D’yakov, Yu.T., et al., Fundamental’naya fitopatologiya (Fundamental Phytopathology), Moscow: Krasand, 2012.

    Google Scholar 

  29. Ferguson, B.J., Indrasumunar, A., Hayshi, S., et al., Molecular analysis of legume nodule development and autoregulation, J. Integrat. Plant Biol., 2010, vol. 52, pp. 61–76.

    Article  CAS  Google Scholar 

  30. Provorov, N.A., Vorob’ev, N.I., and Tikhonovich, I.A., Evolution of symbiotic systems: the programmed selection caused by pre-adaptations and by partners’ feedback, in Charl’z Darvin i sovremennaya biologiya (Charles Darwin and the Modern Biology), Kolchinskii, E.I., Ed., St. Petersburg: Nestor-Istoriya, 2010, pp. 470–485.

    Google Scholar 

  31. Tikhonovich, I.A. and Provorov, N.A., Development of symbiogenetic approaches for studying variation and heredity of superspecies systems, Russ. J. Genet., 2012, vol. 48, pp. 357–368.

    Article  CAS  Google Scholar 

  32. Kent, B.N., Salichos, L., Gibbons, J.G., et al., Complete bacteriophage transfer in a bacterial endosymbiont (Wolbachia) determined by targeted genome capture, Genome Biol. Evol., 2011, vol. 3, pp. 209–218.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Darby, A.C., Armstrong, S.D., Bah, G.S., et al., Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis, Genome Res., 2012, vol. 22, pp. 2467–2477.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wilkinson, D.M., The role of seed dispersal in the evolution of mycorrhizae, Oikos, 1997, vol. 78, pp. 394–396.

    Article  Google Scholar 

  35. Ran, L., Larsson, J., Vigil-Stenman, T., et al., Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium, PLoS One, 2010, vol. 5, pp. 1–11.

    Article  Google Scholar 

  36. Moran, N.A., Genome evolution in symbiotic bacteria, ASM News, 2002, vol. 68, pp. 499–505.

    Google Scholar 

  37. Viñuelas, J., Febvay, G., Duport, G., et al., Multimodal dynamic response of the Buchnera aphidicola pLeu plasmid to variations in leucine demand of its host, the pea aphid Acyrthosiphon pisum, Mol. Microbiol., 2011, vol. 81, pp. 1271–1285.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Provorov, N.A. and Tikhonovich, I.A., Superspecies genetic systems, Biol. Bull. Rev., 2014, vol. 75, no. 4, pp. 247–260.

    CAS  Google Scholar 

  39. Margulis, L. and Sagan, D., Acquiring Genomes: A Theory of the Origins of Species, New York: Basic Books, 2002.

    Google Scholar 

  40. Zilber-Rosenberg, I. and Rosenberg, E., Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution, FEMS Microbiol. Rev., 2008, vol. 32, pp. 723–735.

    Article  CAS  PubMed  Google Scholar 

  41. Acuña, R., Padilla, B.E., Flórez-Ramos, C.P., et al., Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, pp. 4197–4202.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Wu, M., Sun, L.V., Vamathevan, J., et al., Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements, PLoS Biol., 2004, vol. 2. e69. doi 10.1371/journal.pbio.0020069

    Article  PubMed Central  PubMed  Google Scholar 

  43. Stegemann, S. and Bock, R., Experimental reconstruction of functional gene transfer from the tobacco plastid genome to the nucleus, Plant Cell, 2006, vol. 18, pp. 2869–2878.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Stegemann, S., Hartmann, S., Ruf, S., and Bock, R., High-frequency gene transfer from the chloroplast genome to the nucleus, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 8828–8833.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Nikoh, N., McCutcheon, J.P., Kudo, T., et al., Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host, PLoS Genet., 2010, vol. 6. e1000827. doi 10.1371/journal.pgen. 1000827

    Article  PubMed Central  PubMed  Google Scholar 

  46. Rodríguez-Moreno, L., González, V.M., Benjak, A., et al., Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin, BMC Genomics, 2011, vol. 12. doi 10.1186/1471-2164-12-424

  47. Woolfit, M., Iturbe-Ormaetxe, I., McGraw, E.A., and O’Neill, S.L., An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis, Mol. Biol. Evol., 2009, vol. 26, pp. 367–374.

    Article  CAS  PubMed  Google Scholar 

  48. Gross, J. and Bhattacharya, D., Mitochondrial and plastid evolution in eukaryotes: an outsiders’ perspective, Nat. Rev. Genet., 2009, vol. 10, pp. 495–505.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Provorov.

Additional information

Original Russian Text © N.A. Provorov, I.A. Tikhonovich, 2015, published in Genetika, 2015, Vol. 51, No. 4, pp. 456–465.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Provorov, N.A., Tikhonovich, I.A. Bacterial genome evolution in superspecies systems: An approach to the reconstruction of symbiogenesis processes. Russ J Genet 51, 377–385 (2015). https://doi.org/10.1134/S1022795414080043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414080043

Keywords