Abstract
We used Bayesian statistics to investigate the demographic history of the walleye pollock in the sea of Okhotks based on polymorphisms of sequences of the Nd2 and Cytb mitochondrial genes. We determined the average age for the Most Recent Common Ancestor (MRCA) as 44.1 ± 2 and 52.6 ± 1.3 thousand years, respectively, for Nd2 and Cytb. These findings suggest that demographic expansion of the Okhotsk Sea pollock began 10–12 thousand years ago, which coincides with the period of global changes in the sea level during the Late Pleistocene-Early Holocene eras.
Similar content being viewed by others
References
Avise, J.C., Phylogeography: The History and Formation of Species, Cambridge, Mass.: Harvard Univ. Press, 2000.
Grant, W.S., Spies, I., and Canino, M.F., Shifting-balance stock structure in North Pacific walleye pollock (Gadus chalcogrammus), ICES J. Mar. Sci., 2010, vol. 67, pp. 1687–1696.
Bosin, A.A., Reconstruction of primary production of the Sea of Okhotsk in the Late Pleistocene and Holocene inferred from chlorine method data, Cand. Sci. (Geogr.) Dissertation, Moscow: Passific Oceanol. Inst., Far Eastern Branch of Russ. Acad. Sci., 2009.
Avise, J.C., Molecular Markers, Natural History, and Evolution, Sunderland: Sinauer, 2004, 2nd ed.
Carr, S.M. and Marshall, H.D., Phylogeographic analysis of complete mtDNA genomes from Walleye Pollock (Gadus chalcogrammus Pallas, 1811) shows an ancient origin of genetic biodiversity, Mitochondrial DNA, 2008, vol. 19, no. 6, pp. 490–496.
Drummond, A.J., Rambaut, A., Shapiro, B., and Pybus, O.G., Bayesian coalescent inference of past population dynamics from molecular sequences, Mol. Biol. Evol., 2005, no. 22, no. 5, pp. 1185–1192.
Canino, M.F., Spies, I.B., Cunningham, K.M., et al., Multiple ice-age refugia in pacific cod Gadus chalcogrammus, Mol. Ecol., 2010, vol. 19, pp. 4339–4351.
Liu, J.-X., Tatarenkov, A., Beacham, T.D., et al., Effects of Pleistocene climatic fluctuations on the phylogeographic and demographic histories of Pacific herring (Clupea pallasii), Mol. Ecol., 2011, vol. 20, pp. 3879–3893.
Atarhouch, T., Ruber, L., Gonzalez, E.G., et al., Signature of an early genetic bottleneck in a population of Moroccan sardines (Sardina pilchardus), Mol. Phylogenet. Evol., 2006, vol. 39, no. 2, pp. 373–383.
Carr, S.M. and Marshall, H.D., Intraspecific phylogeographic genomics from multiple complete mtDNA genomes in Atlantic cod (Gadus morhua): origins of the “Codmother” transatlantic vicariance and midglacial population expansion, Genetics, 2008, vol. 180, pp. 381–389.
Bulatov, O.A. and Sobolevskii, E.I., Distribution stock state and prospects for walleye pollock fisheries in the Bering Sea open waters, Biol. Morya, 1990, no. 5, pp. 65–72.
Mel’nikov, I.V., Smirnov, A.V., and Baitalyuk, A.A., Modern principles of resources and pollock fisheries management in Russia, Vopr. Rybolov., 2011, vol. 12, no. 2(46), pp. 210–223.
Kuznetsov, V.V., Kotenev, B.N., and Kuznetsova, E.N., Population structure of walleye pollock Theragra chalcogramma stock in the northern Okhotsk Sea and problems of its fishery utilization, Vopr. Rybolov., 2008, vol. 9, no. 1(33), pp. 110–127.
Shubina, E.A., Ponomoreva, E.V., and Glubokov, A.I., Population genetic structure of walleye pollock Theragra chalcogramma (Gadidae, Pisces) from the Bering Sea and Sea of Okhotsk, Mol. Biol. (Moscow), 2009, vol. 43, no. 5, pp. 855–866.
Grant, W.S., Spies, I.B., and Canino, M.F., Biogeographic evidence for selection on mitochondrial DNA in North Pacific walleye pollock Theragra chalcogramma, J. Hered., 2006, vol. 97, no. 6, pp. 571–580.
Buslov, A.V., New data on distribution and migrations of walleye pollock in the Pacific waters adjacent to the north Kuril Islands and southeast Kamchatka, Izv. Tikhookean. Inst. Rybov. Okeanogr., 2001, vol. 128, pp. 229–241.
Brykov, V.A., Polyakova, N.E., Priima, T.F., and Katugin, O.N., Mitochondrial DNA variation in northwestern Bering Sea walleye pollock, Theragra chalcogramma (Pallas), Environ. Biol. Fishes, 2004, vol. 69, pp. 167–175.
Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982.
Coulson, M.V., Marshall, H.D., Pepin, P., and Carr, S.M., Mitochondrial genomics of gadine fishes: implications for taxonomy and biogeographic origins from whole-genome data sets, Genome, 2006, vol. 49, pp. 1115–1130.
Tamura, K., Dudley, J., Nei, M., and Kumar, S., MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, vol. 24, pp. 1596–1599.
Drummond, A.J. and Rambaut, A., BEAST: Bayesian evolutionary analysis by sampling trees, BMC Evol. Biol., 2007, vol. 7, no. 214. doi:10.1186/147-2148-7-214.
Ho, S., Saarma, U., Barnett, R., et al., The effect of inappropriate calibration: three case studies in molecular ecology, PLoS One, 2008, vol. 3, no. 2, p. e1615.
Pavlinov, I.Ya., Vvedenie v sovremennuyu filogenetiku (kladogeneticheskii aspekt) (Introduction to Contemporary Phylogenetics (a Cladogenetic Aspect)), Moscow: KMK, 2005.
Solovenchuk, L.L., Belyi, M.N., Gorbachev, V.V., and Lapinskii, A.G., Genetic diversity of cod Gadus macrocephalus in the Asian part of the North Pacific, Chteniya pamyati akademika K.V. Simakova (Readings in Memory of Academician K.V. Simakov), (Proc. All-Russ. Sci. Conf.), Magadan, 2013, pp. 172–173.
Tajima, F., The effect of change in population size on DNA polymorphism, Genetics, 1989, vol. 123, pp. 597–601.
Shuntov, V.P., Status of pelagic nekton communities of the Far Eastern seas, Zh. Rybn. Khoz., 1996, no. 1, pp. 35–37.
Solovenchuk, L.L., Lapinskii, A.G., and Gorbachev, V.V., Informativeness of different mtDNA fragments as molecular markers in population genetics of the Pacific herring (Clupea pallasii), Vestn. Sev.-Vost. Gos. Univ., 2012, no. 18, pp. 53–55.
Wakeley, J., Coalescent Theory: An Introduction, Colorado: Roberts, 2008.
Gorbachev, V.V., Application of mathematical modeling to assess the impact of changes in population genetic diversity of aquatic organisms, in Chteniya pamyati V.Ya. Levanidova (Readings in Memory of V.Ya. Levanidov), Vladivostok: Dal’nauka, 2011, issue 5, pp. 114–118.
Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambridge Univ. Press, 1983.
Waelbroeck, C., Labeyrie, L., Michel, E., et al., Sealevel and deep water temperature changes derived from benthic foraminifera isotopic records, Quat. Sci. Rev., 2002, vol. 21, nos. 1–3, pp. 295–305.
Lindberg, G.U., Krupnye kolebaniya urovnya okeana v chetvertichnyi period: biogeograficheskie obosnovaniya gipotezy (Large Fluctuations in Sea Level during the Quaternary Period: Biogeographic Substantiation of the Hypothesis), Leningrad: Nauka, 1972.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © V.V. Gorbachev, A.G. Lapinskiy, O.V. Prikoki, L.L. Solovenchuk, 2014, published in Genetika, 2014, Vol. 50, No. 7, pp. 868–873.
Rights and permissions
About this article
Cite this article
Gorbachev, V.V., Lapinskiy, A.G., Prikoki, O.V. et al. Modeling the dynamics of the effective population size of the Okhotsk Sea pollock in the Holocene era on the basis of genetic variability in the Nd2 and Cytb mtDNA loci. Russ J Genet 50, 763–768 (2014). https://doi.org/10.1134/S1022795414070072
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1022795414070072


