Skip to main content

Advertisement

Log in

Modeling the dynamics of the effective population size of the Okhotsk Sea pollock in the Holocene era on the basis of genetic variability in the Nd2 and Cytb mtDNA loci

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

We used Bayesian statistics to investigate the demographic history of the walleye pollock in the sea of Okhotks based on polymorphisms of sequences of the Nd2 and Cytb mitochondrial genes. We determined the average age for the Most Recent Common Ancestor (MRCA) as 44.1 ± 2 and 52.6 ± 1.3 thousand years, respectively, for Nd2 and Cytb. These findings suggest that demographic expansion of the Okhotsk Sea pollock began 10–12 thousand years ago, which coincides with the period of global changes in the sea level during the Late Pleistocene-Early Holocene eras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avise, J.C., Phylogeography: The History and Formation of Species, Cambridge, Mass.: Harvard Univ. Press, 2000.

    Google Scholar 

  2. Grant, W.S., Spies, I., and Canino, M.F., Shifting-balance stock structure in North Pacific walleye pollock (Gadus chalcogrammus), ICES J. Mar. Sci., 2010, vol. 67, pp. 1687–1696.

    Article  Google Scholar 

  3. Bosin, A.A., Reconstruction of primary production of the Sea of Okhotsk in the Late Pleistocene and Holocene inferred from chlorine method data, Cand. Sci. (Geogr.) Dissertation, Moscow: Passific Oceanol. Inst., Far Eastern Branch of Russ. Acad. Sci., 2009.

    Google Scholar 

  4. Avise, J.C., Molecular Markers, Natural History, and Evolution, Sunderland: Sinauer, 2004, 2nd ed.

    Google Scholar 

  5. Carr, S.M. and Marshall, H.D., Phylogeographic analysis of complete mtDNA genomes from Walleye Pollock (Gadus chalcogrammus Pallas, 1811) shows an ancient origin of genetic biodiversity, Mitochondrial DNA, 2008, vol. 19, no. 6, pp. 490–496.

    Article  CAS  PubMed  Google Scholar 

  6. Drummond, A.J., Rambaut, A., Shapiro, B., and Pybus, O.G., Bayesian coalescent inference of past population dynamics from molecular sequences, Mol. Biol. Evol., 2005, no. 22, no. 5, pp. 1185–1192.

    Google Scholar 

  7. Canino, M.F., Spies, I.B., Cunningham, K.M., et al., Multiple ice-age refugia in pacific cod Gadus chalcogrammus, Mol. Ecol., 2010, vol. 19, pp. 4339–4351.

    Article  Google Scholar 

  8. Liu, J.-X., Tatarenkov, A., Beacham, T.D., et al., Effects of Pleistocene climatic fluctuations on the phylogeographic and demographic histories of Pacific herring (Clupea pallasii), Mol. Ecol., 2011, vol. 20, pp. 3879–3893.

    Article  PubMed  Google Scholar 

  9. Atarhouch, T., Ruber, L., Gonzalez, E.G., et al., Signature of an early genetic bottleneck in a population of Moroccan sardines (Sardina pilchardus), Mol. Phylogenet. Evol., 2006, vol. 39, no. 2, pp. 373–383.

    Article  CAS  PubMed  Google Scholar 

  10. Carr, S.M. and Marshall, H.D., Intraspecific phylogeographic genomics from multiple complete mtDNA genomes in Atlantic cod (Gadus morhua): origins of the “Codmother” transatlantic vicariance and midglacial population expansion, Genetics, 2008, vol. 180, pp. 381–389.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Bulatov, O.A. and Sobolevskii, E.I., Distribution stock state and prospects for walleye pollock fisheries in the Bering Sea open waters, Biol. Morya, 1990, no. 5, pp. 65–72.

    Google Scholar 

  12. Mel’nikov, I.V., Smirnov, A.V., and Baitalyuk, A.A., Modern principles of resources and pollock fisheries management in Russia, Vopr. Rybolov., 2011, vol. 12, no. 2(46), pp. 210–223.

    Google Scholar 

  13. Kuznetsov, V.V., Kotenev, B.N., and Kuznetsova, E.N., Population structure of walleye pollock Theragra chalcogramma stock in the northern Okhotsk Sea and problems of its fishery utilization, Vopr. Rybolov., 2008, vol. 9, no. 1(33), pp. 110–127.

    Google Scholar 

  14. Shubina, E.A., Ponomoreva, E.V., and Glubokov, A.I., Population genetic structure of walleye pollock Theragra chalcogramma (Gadidae, Pisces) from the Bering Sea and Sea of Okhotsk, Mol. Biol. (Moscow), 2009, vol. 43, no. 5, pp. 855–866.

    Article  CAS  Google Scholar 

  15. Grant, W.S., Spies, I.B., and Canino, M.F., Biogeographic evidence for selection on mitochondrial DNA in North Pacific walleye pollock Theragra chalcogramma, J. Hered., 2006, vol. 97, no. 6, pp. 571–580.

    Article  CAS  PubMed  Google Scholar 

  16. Buslov, A.V., New data on distribution and migrations of walleye pollock in the Pacific waters adjacent to the north Kuril Islands and southeast Kamchatka, Izv. Tikhookean. Inst. Rybov. Okeanogr., 2001, vol. 128, pp. 229–241.

    Google Scholar 

  17. Brykov, V.A., Polyakova, N.E., Priima, T.F., and Katugin, O.N., Mitochondrial DNA variation in northwestern Bering Sea walleye pollock, Theragra chalcogramma (Pallas), Environ. Biol. Fishes, 2004, vol. 69, pp. 167–175.

    Article  Google Scholar 

  18. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982.

    Google Scholar 

  19. Coulson, M.V., Marshall, H.D., Pepin, P., and Carr, S.M., Mitochondrial genomics of gadine fishes: implications for taxonomy and biogeographic origins from whole-genome data sets, Genome, 2006, vol. 49, pp. 1115–1130.

    Article  CAS  PubMed  Google Scholar 

  20. Tamura, K., Dudley, J., Nei, M., and Kumar, S., MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, vol. 24, pp. 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  21. Drummond, A.J. and Rambaut, A., BEAST: Bayesian evolutionary analysis by sampling trees, BMC Evol. Biol., 2007, vol. 7, no. 214. doi:10.1186/147-2148-7-214.

    Google Scholar 

  22. Ho, S., Saarma, U., Barnett, R., et al., The effect of inappropriate calibration: three case studies in molecular ecology, PLoS One, 2008, vol. 3, no. 2, p. e1615.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Pavlinov, I.Ya., Vvedenie v sovremennuyu filogenetiku (kladogeneticheskii aspekt) (Introduction to Contemporary Phylogenetics (a Cladogenetic Aspect)), Moscow: KMK, 2005.

    Google Scholar 

  24. Solovenchuk, L.L., Belyi, M.N., Gorbachev, V.V., and Lapinskii, A.G., Genetic diversity of cod Gadus macrocephalus in the Asian part of the North Pacific, Chteniya pamyati akademika K.V. Simakova (Readings in Memory of Academician K.V. Simakov), (Proc. All-Russ. Sci. Conf.), Magadan, 2013, pp. 172–173.

    Google Scholar 

  25. Tajima, F., The effect of change in population size on DNA polymorphism, Genetics, 1989, vol. 123, pp. 597–601.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Shuntov, V.P., Status of pelagic nekton communities of the Far Eastern seas, Zh. Rybn. Khoz., 1996, no. 1, pp. 35–37.

    Google Scholar 

  27. Solovenchuk, L.L., Lapinskii, A.G., and Gorbachev, V.V., Informativeness of different mtDNA fragments as molecular markers in population genetics of the Pacific herring (Clupea pallasii), Vestn. Sev.-Vost. Gos. Univ., 2012, no. 18, pp. 53–55.

    Google Scholar 

  28. Wakeley, J., Coalescent Theory: An Introduction, Colorado: Roberts, 2008.

    Google Scholar 

  29. Gorbachev, V.V., Application of mathematical modeling to assess the impact of changes in population genetic diversity of aquatic organisms, in Chteniya pamyati V.Ya. Levanidova (Readings in Memory of V.Ya. Levanidov), Vladivostok: Dal’nauka, 2011, issue 5, pp. 114–118.

    Google Scholar 

  30. Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambridge Univ. Press, 1983.

    Book  Google Scholar 

  31. Waelbroeck, C., Labeyrie, L., Michel, E., et al., Sealevel and deep water temperature changes derived from benthic foraminifera isotopic records, Quat. Sci. Rev., 2002, vol. 21, nos. 1–3, pp. 295–305.

    Article  Google Scholar 

  32. Lindberg, G.U., Krupnye kolebaniya urovnya okeana v chetvertichnyi period: biogeograficheskie obosnovaniya gipotezy (Large Fluctuations in Sea Level during the Quaternary Period: Biogeographic Substantiation of the Hypothesis), Leningrad: Nauka, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Gorbachev.

Additional information

Original Russian Text © V.V. Gorbachev, A.G. Lapinskiy, O.V. Prikoki, L.L. Solovenchuk, 2014, published in Genetika, 2014, Vol. 50, No. 7, pp. 868–873.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbachev, V.V., Lapinskiy, A.G., Prikoki, O.V. et al. Modeling the dynamics of the effective population size of the Okhotsk Sea pollock in the Holocene era on the basis of genetic variability in the Nd2 and Cytb mtDNA loci. Russ J Genet 50, 763–768 (2014). https://doi.org/10.1134/S1022795414070072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414070072

Keywords