Skip to main content

Advertisement

Log in

Expression of the Drosophila melanogaster limk1 gene 3′-UTRs mRNA in yeast Saccharomyces cerevisiae

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3′-untranscribed regions (3′-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3′-UTRs’ and RNA-binding proteins’ interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limk1 mRNA 3′-UTRs revealed the potential sites of yeast transcriptional termination. Computer modeling demonstrated the possibility of secondary structure formation in limk1 mRNA 3′-UTRs. For an evaluation of the functional activity of Drosophila 3′-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3′-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limk1 Gene 3′-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3′-UTR’s role in post-transcriptional regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bamburg, J.R. and Bloom, G.S., Cytoskeletal pathologies of Alzheimer disease, Cell Motil. Cytoskeleton, 2009, vol. 66, no. 8, pp. 635–649.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Yang, C., Huang, M., Debiasio, J., et al., Profilin enhances Cdc42-induced nucleation of actin polymerization, J. Cell Biol., 2000, vol. 150, no. 5, pp. 1001–1012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mori, T., Okano, I., Mizuno, K., et al., Comparison of tissue distribution of two novel serine/threonine kinase genes containing the LIM motif (LIMK-1 and LIMK-2) in the developing rat, Brain Res. Mol. Brain Res., 1997, vol. 45, no. 2, pp. 247–254.

    Article  CAS  PubMed  Google Scholar 

  4. Meng, Y., Zhang, Y., Tregoubov, V., et al., Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice, Neuron, 2002, vol. 35, no. 1, pp. 121–133.

    Article  CAS  PubMed  Google Scholar 

  5. Lim, M.K., Kawamura, T., Ohsawa, Y., et al., Parkin interacts with LIM kinase 1 and reduces its cofilinphosphorylation activity via ubiquitination, Exp. Cell Res., 2007, vol. 313, no. 13, pp. 2858–2874.

    Article  CAS  PubMed  Google Scholar 

  6. Savvateeva, E.V. and Kamyshev, N.G., Effect of Drosophila melanogaster mutations involving cyclic adenosine-3′,5’-monophosphate metabolism on motor activity and learning, Dokl. Akad. Nauk SSSR, 1978, vol. 243, pp. 1564–1567.

    CAS  PubMed  Google Scholar 

  7. Savvateeva, E.V. and Kamyshev, N.G., Behavioral effects of temperature sensitive mutations affecting metabolism of cAMP in Drosophila melanogaster, Pharmacol. Biochem. Behav., 1981, vol. 14, no. 5, pp. 603–611.

    Article  CAS  PubMed  Google Scholar 

  8. Edelmann, L., Spiteri, E., Koren, K., et al., AT-Rich palindromes mediate the constitutional t(11;22) translocation, Am. J. Hum. Genet., 2001, vol. 68, no. 1, pp. 1–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ceman, S. and Saugstad, J., MicroRNAs: meta-controllers of gene expression in synaptic activity emerge as genetic and diagnostic markers of human disease, Pharmacol. Ther., 2011, vol. 130, no. 1, pp. 26–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Sumi, T., Hashigasako, A., Matsumoto, K., and Nakamura, T., Different activity regulation and subcellular localization of LIMK1 and LIMK2 during cell cycle transition, Exp. Cell Res., 2006, vol. 312, no. 7, pp. 1021–1030.

    Article  CAS  PubMed  Google Scholar 

  11. Wilkie, G.S., Dickson, K.S., and Gray, N.K., Regulation of mRNA translation by 5′- and 3′-UTR-binding factors, Trends Biochem. Sci., 2003, vol. 28, no. 4, pp. 182–188.

    Article  CAS  PubMed  Google Scholar 

  12. Hilgers, V., Perry, M.W., Hendrix, D., et al., Neural-specific elongation of 3′ UTRs during Drosophila development, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 38, pp. 15864–15869.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Mendez, R. and Richter, J.D., Translational control by CPEB: a means to the end, Nat. Rev. Mol. Cell Biol., 2001, vol. 2, pp. 521–529.

    Article  CAS  PubMed  Google Scholar 

  14. Guthrie, C. and Fink, G.R., Guide to Yeast Genetics and Molecular Biology, Academic, 1991, vol. 194.

  15. Samsonova, M.G., Padkina, M.V., and Krasnopevtseva, N.G., Genetical and biochemical studies of acid phosphatases of Saccharomyces cerevisiae: 5. Genetic control of regulation of acid phosphatase II synthesis, Genetika (Moscow), 1975, vol. 11, pp. 104–115.

    CAS  Google Scholar 

  16. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982.

    Google Scholar 

  17. Sambrook, J. and Russel, D.W., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab. Press, 2001, 3rd ed.

    Google Scholar 

  18. Glover, D.M., Gene Cloning-The Mechanics of DNA-Manipulation, London: Chapman & Hall, 1984.

    Google Scholar 

  19. Padkina, M.V., Krasnopevtseva, N.G., Petrashen’, M.G., et al., Genetical and biochemical studies of acid phosphatases of Saccharomyces cerevisiae: 1. Characterization of acid phosphatases from different strains, Genetika (Moscow), 1974, vol. 10, pp. 100–111.

    CAS  Google Scholar 

  20. Gruber, A.R., Lorenz, R., Bernhart, S.H., et al., The Vienna RNA website, Nucleic Acids Res., 2008, vol. 36. doi: 10.1093/nar/gkn188

  21. Zuker, M. and Stiegler, P., Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information, Nucleic Acids Res., 1981, vol. 9, no. 1, pp. 133–148.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. McCaskill, J.S., The equilibrium partition function and base pair binding probabilities for RNA secondary structure, Biopolymers, 1990, vol. 29, nos. 6–7, pp. 1105–1119.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, J., Hyman, L., and Moore, C., Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis, Microbiol. Mol. Biol. Rev., 1999, vol. 63, no. 2, pp. 405–445.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Ozsolak, F., Kapranov, P., Foissac, S., et al., Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation, Cell, 2010, vol. 43, no. 6, pp. 1018–1029.

    Article  Google Scholar 

  25. Kuehner, J.N., Pearson, E.L., and Moore, C., Unraveling the means to an end: RNA polymerase II transcription termination, Nat. Rev. Mol. Cell Biol., 2011, vol. 12, no. 5, pp. 283–294.

    Article  CAS  PubMed  Google Scholar 

  26. Plass, M., Codony-Servat, C., Ferreira, P.G., et al., RNA secondary structure mediates alternative 3′ss selection in Saccharomyces cerevisiae, RNA, 2012, vol. 18, no. 6, pp. 1103–1115.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mercer, T.R., Wilhelm, D., Dinger, M.E., et al., Expression of distinct RNAs from 3′ untranslated regions, Nucleic Acids Res., 2012, vol. 40, no. 18, pp. 8862–8873.

    Article  Google Scholar 

  28. Wickens, M., Bernstein, D.S., Kimble, J., and Parker, R., A PUF family portrait: 3′UTR regulation as a way of life, Trends Genet., 2002, vol. 18, no. 3, pp. 150–157.

    Article  CAS  PubMed  Google Scholar 

  29. Chan, S., Choi, E.A., and Shi, Y., Pre-mRNA 3′-end processing complex assembly and function, Wiley Interdiscip. Rev. RNA, 2011, vol. 2, no. 3, pp. 321–335.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Vessey, J.P., Schoderboeck, L., Gingl, E., et al., Mammalian Pumilio 2 regulates dendrite morphogenesis and synaptic function, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 7, pp. 3222–3227.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Sambuk.

Additional information

Original Russian Text © A.M. Rumyantsev, G.A. Zakharov, A.V. Zhuravlev, M.V. Padkina, E.V. Savvateeva-Popova, E.V. Sambuk, 2014, published in Genetika, 2014, Vol. 50, No. 6, pp. 652–659.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantsev, A.M., Zakharov, G.A., Zhuravlev, A.V. et al. Expression of the Drosophila melanogaster limk1 gene 3′-UTRs mRNA in yeast Saccharomyces cerevisiae . Russ J Genet 50, 569–576 (2014). https://doi.org/10.1134/S102279541406009X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541406009X

Keywords