Skip to main content
Log in

Molecular variability in geographically distant populations of Drosophila melanogaster at the Lim3 gene regulating nervous system development

  • General Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In this study, we compare the variability of the regulatory region of the Lim3 gene, which plays a key role in the development of the nervous system, in two populations of Drosophila melanogaster inhabiting the cities of Aleksandrov (Russia) and Raleigh (United States). The two population areas are located in different geographic regions and differ in their ecology. A comparison of nucleotide sequences of 16 (2010) and 20 (2011) alleles from the Alexandrov population showed that in both cases the variability level of the untranslated Lim3 region was considerably lower than that of the 5’ regulatory region adjacent to the transcription start site. According to quantitative and qualitative parameters of the variability, there was no difference between samples of different years, which indicates the stability of the population inhabiting the northern border of the species areal. The patterns of polymorphic sites are similar in both populations, which suggest a neutral character of the variability found with respect to environmental factors, as well as the importance of nucleotide substitutions in a number of sites of the Lim3 regulatory region with respect to the control of this gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moriyama, E.N. and Powell, J.R., Intraspecific nuclear DNA variation in Drosophila, Mol. Biol. Evol., 1996, vol. 13, pp. 261–277.

    Article  CAS  PubMed  Google Scholar 

  2. De Luca, M., Roshina, N.V., Geiger-Thornsberry, G.L., et al., Dopa decarboxylase (Ddc) affects variation in Drosophila longevity, Nat. Genet., 2003, vol. 34, pp. 429–433.

    Article  PubMed  Google Scholar 

  3. Palsson, A., Rouse, A., Riley-Berger, R., et al., Nucleotide variation in the Egfr locus of Drosophila melanogaster, Genetics, 2004, vol. 167, pp. 1199–1212.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Simonenko, A.V., Rybina, O.Yu., and Pasyukova, E.G., Molecular variation of the shuttle craft and Lim3 genes, controlling the development of the nervous system, in a natural Drosophila melanogaster population, Russ. J. Genet., 2008, vol. 44, no. 9, pp. 1020–1024.

    Article  CAS  Google Scholar 

  5. Rybina, O.Y. and Pasyukova, E.G., A naturally occurring polymorphism at Drosophila melanogaster Lim3 locus, a homolog of human LHX3/4, ffects Lim3 transcription and fly lifespan, PLoS One, 2010, vol. 5. e12651.

  6. Sackton, T.B., Kulathinal, R.J., Bergman, C.M., et al., Population genomic inferences from sparse high-throughput sequencing of two populations of Drosophila melanogaster, Genome Biol. Evol., 2009, vol. 1, pp. 449–465.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Langley, C.H., Stevens, K., Cardeno, C., et al., Genomic variation in natural populations of Drosophila melanogaster, Genetics, 2012, vol. 192, pp. 533–598.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mackay, T.F., Richards, S., Stone, E.A., et al., The Drosophila melanogaster genetic reference panel, Nature, 2012, vol. 482, pp. 173–178.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Frydenberg, J., Hoffmann, A.A., and Loeschcke, V., DNA sequence variation and latitudinal associations in hsp23, hsp26 and hsp27 from natural populations of Drosophila melanogaster, Mol. Ecol., 2003, vol. 12, pp. 2025–2032.

    Article  CAS  PubMed  Google Scholar 

  10. Paaby, A.B., Blacket, M.J., Hoffmann, A.A., and Schmidt, P.S., Identification of a candidate adaptive polymorphism for Drosophila life history by parallel independent clines on two continents, Mol. Ecol., 2010, vol. 19, pp. 760–774.

    Article  CAS  PubMed  Google Scholar 

  11. Kolaczkowski, B., Kern, A.D., Holloway, A.K., and Begun, D.J., Genomic differentiation between temperate and tropical Australian populations of Drosophila melanogaster, Genetics, 2011, vol. 187, pp. 245–260.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Fabian, D.K., Kapun, M., Nolte, V., et al., Genome-wide patterns of latitudinal differentiation among populations of Drosophila melanogaster from North America, Mol. Ecol., 2012, vol. 21, pp. 4748–4769.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Thor, S., Andersson, S.G., Tomlinson, A., and Thomas, J.B., A LIM-homeodomain combinatorial code for motor-neuron pathway selection, Nature, 1999, vol. 397, pp. 76–80.

    Article  CAS  PubMed  Google Scholar 

  14. Varela-Echavarría, A., Pfaff, S.L., and Guthrie, S., Differential expression of LIM homeobox genes among motor neuron subpopulations in the developing chick brain stem, Mol. Cell Neurosci., 1996, vol. 8, pp. 242–257.

    Article  PubMed  Google Scholar 

  15. Sharma, K., Sheng, H.Z., Lettieri, K., et al., LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons, Cell, 1998, vol. 95, pp. 817–828.

    Article  CAS  PubMed  Google Scholar 

  16. Barker, J.S.F., Sexual isolation between Drosophila melanogaster and Drosophila simulans, Am. Nat., 1962, vol. 96, pp. 105–115.

    Article  Google Scholar 

  17. Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, vol. 123, pp. 585–595.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Fu, Y.X. and Li, W.H., Statistical tests of neutrality of mutations, Genetics, 1993, vol. 133, pp. 693–709.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Librado, P. and Rozas, J., DnaSP v. 5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  20. Demerec, M., The Biology of Drosophila, Cold Spring Harbour: CSHL Press, 1994.

    Google Scholar 

  21. Andolfatto, P., Adaptive evolution of non-coding DNA in Drosophila, Nature, 2005, vol. 437, pp. 1149–1152.

    Article  CAS  PubMed  Google Scholar 

  22. Urbach, R. and Technau, G.M., Molecular markers for identified neuroblasts in the developing brain of Drosophila, Development, 2003, vol. 130, pp. 3621–3637.

    Article  CAS  PubMed  Google Scholar 

  23. Li, X., Erclik, T., Bertet, C., et al., Temporal patterning of Drosophila medulla neuroblasts controls neural fates, Nature, 2013, vol. 498, pp. 456–462.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Pasyukova.

Additional information

Original Russian Text © E.R. Veselkina, O.Yu. Rybina, A.V. Symonenko, V.E. Alatortsev, N.V. Roshchina, E.G. Pasyukova, 2014, published in Genetika, 2014, Vol. 50, No. 6, pp. 629–637.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veselkina, E.R., Rybina, O.Y., Symonenko, A.V. et al. Molecular variability in geographically distant populations of Drosophila melanogaster at the Lim3 gene regulating nervous system development. Russ J Genet 50, 549–556 (2014). https://doi.org/10.1134/S1022795414050111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414050111

Keywords

Navigation