Skip to main content
Log in

Molecular and genetic aspects of interactions of the circadian clock and the energy-producing substrate metabolism in mammals

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The circadian clock system coordinates all the processes occurring in the body and controls the rhythmic pattern in metabolic system functioning. The reciprocal relationship between molecular and genetic systems of the circadian clock and the systems responsible for carbohydrate and lipid turnover provide fine tuning both of metabolic processes and the circadian clock regulation system, permitting the body to adapt to a variable environment. NAD-dependent enzymes, protein-kinases, and transcription regulators could serve as presumable molecular components, which are responsible for such a type of relationship. Genetic models and epidemiological studies demonstrate an association between mutations in the circadian clock genes with the risk of a disturbance of metabolic processes regulation, obesity development, and other manifestations of metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bass, J., Circadian topology of metabolism, Nature, 2012, vol. 491, no. 7424, pp. 348–356.

    CAS  PubMed  Google Scholar 

  2. Lahti, T., Merikanto, I., and Partonen, T., Circadian clock disruptions and the risk of cancer, Ann. Med., 2012, vol. 44, no. 8, pp. 847–853.

    CAS  PubMed  Google Scholar 

  3. Antunes, L.C., Levandovski, R., Dantas, G., et al., Obesity and shift work: chronobiological aspects, Nutr. Res. Rev., 2010, vol. 23, no. 1, pp. 155–168.

    CAS  PubMed  Google Scholar 

  4. Karatsoreos, I.N., Effects of circadian disruption on mental and physical health, Curr. Neurol. Neurosci. Rep., 2012, vol. 12, no. 2, pp. 218–225.

    PubMed  Google Scholar 

  5. Karlsson, B., Knutsson, A., and Lindahl, B., Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people, Occup. Environ. Med., 2001, vol. 58, pp. 747–752.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Van Cauter, E. and Knutson, K., Sleep and the epidemic of obesity in children and adults, Eur. J. Endocrinol., 2008, vol. 159,suppl. 1, pp. S59–S66.

    PubMed Central  PubMed  Google Scholar 

  7. Fonken, L.K., Workman, J.L., Walton, J.C., et al., Light at night increases body mass by shifting the time of food intake, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 43, pp. 18664–18669.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Jermendy, G., Nádas, J., Hegyi, I., et al., Assessment of cardiometabolic risk among shift workers in Hungary, Health Qual Life Outcomes, 2012, vol. 10, p. 18.

    PubMed Central  PubMed  Google Scholar 

  9. Reppert, M. and Weaver, D.R., Molecular analysis of mammalian circadian rhythms, Annu. Rev. Physiol., 2001, vol. 63, pp. 647–676.

    CAS  PubMed  Google Scholar 

  10. Saper, C.B., Lu, J., Chou, T.C., and Gooley, J., The hypothalamic integrator for circadian rhythms, Trends Neurosci., 2005, vol. 28, no. 3, pp. 152–157.

    CAS  PubMed  Google Scholar 

  11. Ueda, H.R., Hayashi, S., Chen, W., et al., Systemlevel identification of transcriptional circuits underlying mammalian circadian clocks, Nat. Genet., 2005, vol. 37, pp. 187–192.

    CAS  PubMed  Google Scholar 

  12. Panda, S., Antoch, M.P., Miller, B.H., et al., Coordinated transcription of key pathways in the mouse by the circadian clock, Cell, 2002, vol. 109, no. 3, pp. 307–320.

    CAS  PubMed  Google Scholar 

  13. Gekakis, N., Staknis, D., Nguyen, H.B., et al., Role of the CLOCK protein in the mammalian circadian mechanism, Science, 1998, vol. 280, no. 5369, pp. 1564–1569.

    CAS  PubMed  Google Scholar 

  14. Honma, S., Kawamoto, T., Takagi, Y., et al., Dec1 and Dec2 are regulators of the mammalian molecular clock, Nature, 2002, vol. 419, no. 6909, pp. 841–844.

    CAS  PubMed  Google Scholar 

  15. Yamaguchi, S., Mitsui, S., Yan, L., et al., Role of DBP in the circadian oscillatory mechanism, Mol. Cell Biol., 2000, vol. 20, no. 13, pp. 4773–4781.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Travnickova-Bendova, Z., Cermakian, N., Reppert, S.M., and Sassone-Corsi, P., Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK:BMAL1 activity, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 11, pp. 7728–7733.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Yamamoto, T., Nakahata, Y., Tanaka, M., et al., Acute physical stress elevates mouse period1 mRNA expression in mouse peripheral tissues via a glucocorticoidresponsive element, Biol. Chem., 2005, vol. 280, no. 51, pp. 42036–42043.

    CAS  Google Scholar 

  18. Langmesser, S., Tallone, T., Bordon, A., et al., Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK, BMC Mol. Biol., 2008, vol. 9, p. 41.

    PubMed Central  PubMed  Google Scholar 

  19. Dardente, H., Fortier, E.E., Martineau, V., and Cermakian, N., Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression, Biochem. J., 2007, vol. 402, no. 3, pp. 525–536.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Emery, P. and Reppert, S.M.A., A rhythmic Ror, Neuron, 2004, vol. 43, no. 4, pp. 443–446.

    CAS  PubMed  Google Scholar 

  21. Preitner, N., Damiola, F., Lopez-Molina, L., et al., The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator, Cell, 2002, vol. 110, no. 2, pp. 251–260.

    CAS  PubMed  Google Scholar 

  22. Triqueneaux, G., Thenot, S., Kakizawa, T., et al., The orphan receptor Rev-erbalpha gene is a target of the circadian clock pacemaker, J. Mol. Endocrinol., 2004, vol. 33, pp. 585–608.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Sato, T.K., Panda, S., Miraglia, L.J., et al., A functional genomics strategy reveals Rora as a component of the mammalian circadian clock, Neuron, 2004, vol. 43, no 4, pp. 527–537.

    Google Scholar 

  24. Kawamoto, T., Noshiro, M., Sato, F., et al., A novel autofeedback loop of Dec1 transcription involved in circadian rhythm regulation, Biochem. Biophys. Res. Commun., 2004, vol. 313, no. 1, pp. 117–124.

    CAS  PubMed  Google Scholar 

  25. Hamaguchi, H., Fujimoto, K., Kawamoto, T., et al., Expression of the gene for Dec2, a basic helix-loophelix transcription factor, is regulated by a molecular clock system, Biochem. J., 2004, vol. 382, no. 1, pp. 43–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Koyanagi, S., Hamdan, A.M., Horiguchi, M., et al., cAMP-response element (CRE)-mediated transcription by activating transcription factor-4 (ATF4) is essential for circadian expression of the Period2 gene, J. Biol. Chem., 2011, vol. 286, pp. 32416–32423.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Canaple, L., Rambaud, J., Dkhissi-Benyahya, O., et al., Reciprocal regulation of brain and muscle Arntlike protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock, Mol. Endocrinol., 2006, no. 8, pp. 1715–1727.

    Google Scholar 

  28. Gervois, P., Chopin-Delannoy, S., Fadel, A., et al., Fibrates increase human REV-ERBalpha expression in liver via a novel peroxisome proliferator-activated receptor response element, Mol. Endocrinol., 1999, vol. 13, no. 3, pp. 400–409.

    CAS  PubMed  Google Scholar 

  29. Reddy, T.E., Gertz, J., Crawford, G.E., et al., The hypersensitive glucocorticoid response specifically regulates period 1 and expression of circadian genes, Mol. Cell Biol., 2012, vol. 32, no. 18, pp. 3756–3767.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Dufour, C.R., Levasseur, M.P., Pham, N.H., et al., Genomic convergence among ERRα, PROX1, and BMAL1 in the control of metabolic clock outputs, PLoS Genet., 2011, vol. 7, no. 6, p. e1002143.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Hirota, N., Kon, T., Itagaki, N., et al., Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork, Genes Cells, 2010, vol. 15, pp. 111–121.

    CAS  PubMed  Google Scholar 

  32. Nader, N., Chrousos, G.P., and Kino, T., Circadian rhythm transcription factor clock regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications, FASEB J., 2009, vol. 23, no. 5, pp. 1572–1583.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Asher, G. and Schibler, U., Crosstalk between components of circadian and metabolic cycles in mammals, Cell Metab., 2011, vol. 13, pp. 125–137.

    CAS  PubMed  Google Scholar 

  34. Lamia, K.A., Sachdeva, U.M., DiTacchio, L., et al., AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation, Science, 2009, vol. 326, no. 5951, pp. 437–440.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Um, J.H., Yang, S., Yamazaki, S., et al., Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)dependent degradation of clock protein mPer2, J. Biol. Chem., 2007, vol. 282, no. 29, pp. 20794–20798.

    CAS  PubMed  Google Scholar 

  36. Jordan, S.D. and Lamia, K.A., AMPK at the crossroads of circadian clocks and metabolism, Mol. Cell. Endocrinol., 2013, vol. 366, no. 2, pp. 163–169.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. La Fleur, S.E., Kalsbeek, A., Wortel, J., et al., A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus, Diabetes, 2001, vol. 50, no. 6, pp. 1237–1243.

    PubMed  Google Scholar 

  38. Le Magnen, J., Control of eating behaviour, Baillieres Clin. Gastroenterol., 1988, vol. 2, no. 1, pp. 169–182.

    PubMed  Google Scholar 

  39. Danguir, J. and Nicolaidis, S., Circadian sleep and feeding patterns in the rat: possible dependence on lipogenesis and lipolysis, Am. J. Physiol., 1980, vol. 238, no. 3, pp. E223–E230.

    CAS  PubMed  Google Scholar 

  40. Storch, K.F., Lipan, O., Leykin, I., et al., Extensive and divergent circadian gene expression in liver and heart, Nature, 2002, vol. 417, no. 6884, pp. 78–83.

    CAS  PubMed  Google Scholar 

  41. Wu, G., Zhu, J., He, F., et al., Gene and genome parameters of mammalian liver circadian genes (LCGs), PLoS One, 2012. vol. 7, no. 10, p. e46961.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Koike, N., Yoo, S.H., Huang, H.C., et al., Transcriptional architecture and chromatin landscape of the core circadian clock in mammals, Science, 2012, vol. 338, no. 105, pp. 349–354.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Rey, G., Cesbron, F., Rougemont, J., et al., Genomewide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver, PLoS Biol., 2011, vol. 9, no. 2, p. e1000595.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Dallmann, R., Viola, A.U., Tarokh, L., et al., The human circadian metabolome, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, no. 7, pp. 2625–2629.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Eckel-Mahan, K.L., Patel, V.R., Mohney, R.P., et al., Coordination of the transcriptome and metabolome by the circadian clock, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, no. 14, pp. 5541–5546.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Kolchanov, N.A., Podkolodnaya, O.A., Ignat’eva, E.V., et al., Integration of gene networks, controlling physiological functions of organism, Inform. Vestn. VOGiS, 2005, vol. 9, no. 2, pp. 179–198.

    Google Scholar 

  47. Sonoda, J., Pei, L., and Evans, R.M., Nuclear receptors: decoding metabolic disease, FEBS Lett., 2008, vol. 582, pp. 2–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Yang, X., Downes, M., Yu, R.T., et al., Nuclear receptor expression links the circadian clock to metabolism, Cell, 2006, vol. 126, no. 4, pp. 801–810.

    CAS  PubMed  Google Scholar 

  49. Kohsaka, A., Laposky, A.D., Ramsey, K.M., et al., High-fat diet disrupts behavioral and molecular circadian rhythms in mice, Cell Metab., 2007, vol. 6, no. 5, pp. 414–421.

    CAS  PubMed  Google Scholar 

  50. Kaneko, K., Yamada, T., Tsukita, S., et al., Obesity alters circadian expressions of molecular clock genes in the brainstem, Brain Res., 2009, vol. 1263, pp. 58–68.

    CAS  PubMed  Google Scholar 

  51. Ando, H., Ushijima, K., Kumazaki, M., et al., Associations of metabolic parameters and ethanol consumption with messenger RNA expression of clock genes in healthy men, Chronobiol. Int., 2010, vol. 27, no. 1, pp. 194–203.

    CAS  PubMed  Google Scholar 

  52. Yamaoka, M., Maeda, N., Nakamura, S., et al., A pilot investigation of visceral fat adiposity and gene expression profile in peripheral blood cells, PLoS One, 2012, vol. 7, no. 10, p. e47377.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Gómez-Santos, C., Gómez-Abellán, P., Madrid, J.A., et al., Circadian rhythm of clock genes in human adipose explants, Obesity (Silver Spring), 2009, vol. 17, no. 8, pp. 1481–1485.

    PubMed  Google Scholar 

  54. Tahira, K., Ueno, T., Fukuda, N., et al., Obesity alters the expression profile of clock genes in peripheral blood mononuclear cells, Arch. Med. Sci., 2011, vol. 7, no. 6, pp. 933–940.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Ando, H., Takamura, T., Matsuzawa-Nagata, N., et al., Clock gene expression in peripheral leucocytes of patients with type 2 diabetes, Diabetologia, 2009, vol. 52, no. 2, pp. 329–335.

    CAS  PubMed  Google Scholar 

  56. Stamenkovic, J.A., Olsson, A.H., Nagorny, C.L., et al., Regulation of core clock genes in human islets, Metabolism, 2012, vol. 61, no. 7, pp. 978–985.

    CAS  PubMed  Google Scholar 

  57. Ando, H., Ushijima, K., Yanagihara, H., et al., Clock gene expression in the liver and adipose tissues of nonobese type 2 diabetic Goto-Kakizaki rats, Clin. Exp. Hypertens., 2009, vol. 31, pp. 201–207.

    CAS  PubMed  Google Scholar 

  58. Ando, H., Kumazaki, M., Motosugi, Y., et al., Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice, Endocrinology, 2011, vol. 152, pp. 1347–1354.

    CAS  PubMed  Google Scholar 

  59. Turek, F.W., Joshu, C., Kohsaka, A., et al., Obesity and metabolic syndrome in circadian Clock mutant mice, Science, 2005, vol. 308, pp. 1043–1045.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Marcheva, B., Ramsey, K.M., Buhr, E.D. et al., Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes, Nature, 2010, vol. 466, no. 7306, pp. 627–631.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Kennaway, D.J., Owens, J.A., Voultsios, A., et al., Metabolic homeostasis in mice with disrupted Clock gene expression in peripheral tissues, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, vol. 293, pp. R1528–R1537.

    CAS  PubMed  Google Scholar 

  62. Oishi, K., Atsumi, G., Sugiyama, S., et al., Disrupted fat absorption attenuates obesity induced by a high-fat diet in Clock mutant mice, FEBS Lett., 2006, vol. 580, no. 1, pp. 127–130.

    CAS  PubMed  Google Scholar 

  63. Oishi, K., Ohkura, N., Wakabayashi, M., et al., CLOCK is involved in obesity-induced disordered fibrinolysis in ob/ob mice by regulating PAI-1 gene expression, J. Thromb. Haemost., 2006, vol. 4, no. 8, pp. 1774–1780.

    CAS  PubMed  Google Scholar 

  64. Kudo, T., Tamagawa, T., Kawashima, M., et al., Attenuating effect of Clock mutation on triglyceride contents in the ICR mouse liver under a high-fat diet, J. Biol. Rhythms., 2007, vol. 22, no. 4, pp. 312–323.

    CAS  PubMed  Google Scholar 

  65. Bunger, M.K., Wilsbacher, L.D., Moran, S.M., et al., Mop3 is an essential component of the master circadian pacemaker in mammals, Cell, 2000, vol. 103, no. 7, pp. 1009–1017.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Rudic, R.D., McNamara, P., Curtis, A.M., et al., BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis, PLoS Biol., 2004, vol. 2, no. 11, p. e377.

    PubMed Central  PubMed  Google Scholar 

  67. Shimba, S., Ishii, N., Ohta, Y., et al., Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 34, pp. 12071–12076.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Shimba, S., Ogawa, T., Hitosugi, S., et al., Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation, PLoS One, 2011, vol. 6, no. 9, p. e25231.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Lamia, K.A., Storch, K.F., and Weitz, C.J., Physiological significance of a peripheral tissue circadian clock, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 15172–15177.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Zheng, B., Albrecht, U., Kaasik, K., et al., Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock, Cell, 2001, vol. 105, no. 5, pp. 683–694.

    CAS  PubMed  Google Scholar 

  71. Dallmann, R., Touma, C., Palme, R., Impaired daily glucocorticoid rhythm in Per1Brd mice, J. Comp. Physiol. A, 2006, vol. 192, no. 7, pp. 769–775.

    CAS  Google Scholar 

  72. Stow, L.R., Richards, J., Cheng, K.Y., et al., The circadian protein period 1 contributes to blood pressure control and coordinately regulates renal sodium transport genes, Hypertension, 2012, vol. 59, no. 6, pp. 1151–1156.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Zheng, B., Larkin, D.W., Albrecht, U., et al., The mPer2 gene encodes a functional component of the mammalian circadian clock, Nature, 1999, vol. 400, pp. 169–173.

    CAS  PubMed  Google Scholar 

  74. So, A.Y., Bernal, T.U., Pillsbury, M.L., et al., Glucocorticoid regulation of the circadian clock modulates glucose homeostasis, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, no. 41, pp. 17582–17587.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Grimaldi, B., Bellet, M.M., Katada, S., et al., PER2 controls lipid metabolism by direct regulation of PPAR, Cell Metab., 2010, vol. 12, no. 5, pp. 509–520.

    CAS  PubMed  Google Scholar 

  76. Yang, S., Liu, A., Weidenhammer, A., et al., The role of mPer2 clock gene in glucocorticoid and feeding rhythms, Endocrinology, 2009, vol. 150, no. 5, pp. 2153–2160.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Lamia, K.A., Papp, S.J., Yu, R.T., et al., Cryptochromes mediate rhythmic repression of the glucocorticoid receptor, Nature, 2011, vol. 480, no. 7378, pp. 552–556.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Doi, M., Takahashi, Y., Komatsu, R., et al., Salt-sensitive hypertension in circadian clock-deficient Crynull mice involves dysregulated adrenal Hsd3b6, Nat. Med., 2010, vol. 16, no. 1, pp. 67–74.

    CAS  PubMed  Google Scholar 

  79. Raspé, E., Duez, H., Mansén, A., et al., Identification of Rev-erbalpha as a physiological repressor of apoC-III gene transcription, J. Lipid Res., 2002, vol. 43, no. 12, pp. 2172–2179.

    PubMed  Google Scholar 

  80. Bugge, A., Feng, D., Everett, L.J., et al., Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function, Genes Dev., 2012, vol. 26, no. 7, pp. 657–667.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Mamontova, A., Séguret-Macé, S., Esposito, B., et al., Severe atherosclerosis and hypoalphalipoproteinemia in the staggerer mouse, a mutant of the nuclear receptor RORalpha, Circulation, 1998, vol. 98, no. 4, pp. 2738–2743.

    CAS  PubMed  Google Scholar 

  82. Lee, K.Y., Song, J.Y., Kim, S.H., et al., Association between CLOCK 3111T/C and preferred circadian phase in Korean patients with bipolar disorder, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, vol. 34, no. 7, pp. 1196–1201.

    CAS  PubMed  Google Scholar 

  83. Allebrandt, K.V., Teder-Laving, M., Akyol, M., et al., CLOCK gene variants associate with sleep duration in two independent populations, Biol. Psychiatry, 2010, vol. 67, no. 11, pp. 1040–1047.

    CAS  PubMed  Google Scholar 

  84. Kissling, C., Retz, W., Wiemann, S., et al., Association between CLOCK 3111T/C and preferred circadian phase in Korean patients with bipolar disorder, Am. J. Med. Genet., Part B, 2008, vol. 147, no. 3, pp. 333–338.

    Google Scholar 

  85. Zhang, J., Liao, G., Liu, C., et al., The association of CLOCK gene T3111C polymorphism and hPER3 gene 54-nucleotide repeat polymorphism with Chinese Han people schizophrenics, Mol. Biol. Rep., 2011, vol. 38, no. 1, pp. 349–354.

    CAS  PubMed  Google Scholar 

  86. Hoffman, A.E., Yi, C.H., Zheng, T., et al., CLOCK in breast tumorigenesis: genetic, epigenetic, and transcriptional profiling analyses, Cancer Res., 2010, vol. 70, no. 4, pp. 1459–1468.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Zhou, F., He, X., Liu, H., et al., Functional polymorphisms of circadian positive feedback regulation genes and clinical outcome of Chinese patients with resected colorectal cancer, Cancer, 2012, vol. 118, no. 4, pp. 937–946.

    CAS  PubMed  Google Scholar 

  88. Garaulet, M., Lee, Y.C., Shen, J., et al., CLOCK genetic variation and metabolic syndrome risk: modulation by monounsaturated fatty acids, Am. J. Clin. Nutr., 2009, vol. 90, no. 6, pp. 1466–1475.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Garaulet, M., Sánchez-Moreno, C., Smith, C.E., et al., Ghrelin, sleep reduction and evening preference: relationships to CLOCK 3111 T/C SNP and weight loss, PLoS One, 2011, vol. 6, no. 2, p. e17435.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Tsuzaki, K., Kotani, K., Sano, Y., et al., The association of the Clock 3111 T/C SNP with lipids and lipoproteins including small dense low-density lipoprotein: results from the Mima study, BMC Med. Genet., 2010, vol. 11, p. 150.

    PubMed Central  PubMed  Google Scholar 

  91. Garaulet, M., Corbaln, M.D., Madrid, J.A., et al., CLOCK gene is implicated in weight reduction in obese patients participating in a dietary programme based on the Mediterranean diet, Int. J. Obes. (London), 2010, vol. 34, no. 3, pp. 516–523.

    CAS  Google Scholar 

  92. Tortorella, A., Monteleone, P., Martiadis, V., et al., The 3111T/C polymorphism of the CLOCK gene confers a predisposition to a lifetime lower body weight in patients with anorexia nervosa and bulimia nervosa: a preliminary study, Am. J. Med. Genet., Part B, 2007, vol. 144B, no. 8, pp. 992–995.

    CAS  Google Scholar 

  93. Monteleone, P., Tortorella, A., Docimo, L., et al., Investigation of 3111T/C polymorphism of the CLOCK gene in obese individuals with or without binge eating disorder: association with higher body mass index, Neurosci. Lett., 2008, vol. 435, no. 1, pp. 30–33.

    CAS  PubMed  Google Scholar 

  94. Garaulet, M., Lee, Y.C., Shen, J., et al., Genetic variants in human CLOCK associate with total energy intake and cytokine sleep factors in overweight subjects (GOLDN population), Eur. J. Hum. Genet., 2010, vol. 18, no. 3, pp. 364–369.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Sookoian, S., Castaño, G., Gemma, C., et al., Common genetic variations in CLOCK transcription factor are associated with nonalcoholic fatty liver disease, World J. Gastroenterol., 2007, vol. 13, no. 31, pp. 4242–4248.

    CAS  PubMed  Google Scholar 

  96. Sookoian, S., Gemma, C., Gianotti, T.F., et al., Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity, Am. J. Clin. Nutr., 2008, vol. 87, no. 6, pp. 1606–1615.

    CAS  PubMed  Google Scholar 

  97. Scott, E.M., Carter, A.M., and Grant, P.J., Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man, Int. J. Obes. (London), 2008, vol. 32, no. 4, pp. 658–662.

    CAS  Google Scholar 

  98. International Journal of Obesity (London). http://www.jcircadianrhythms.com/content/7/1/5

  99. Kelly, M.A., Rees, S.D., Hydrie, M.Z., et al., Circadian gene variants and susceptibility to type 2 diabetes: a pilot study, PLoS One, 2012, vol. 7, no. 4, p. e32670.

    PubMed Central  PubMed  Google Scholar 

  100. Woon, P.Y., Kaisaki, P.J., Bragança, J., et al., Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 36, pp. 14412–14417.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Miyazaki, M., Schroder, E., Edelmann, S.E., et al., Age-associated disruption of molecular clock expression in skeletal muscle of the spontaneously hypertensive rat, PLoS One, 2011, vol. 6, no. 11, p. e27168.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Abecasis, G.R., Auton, A., et al., 1000 Genomes Project Consortium: an integrated map of genetic variation from 1092 human genomes, Nature, 2012, vol. 491, no. 7422, pp. 56–65.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Podkolodnaya.

Additional information

Original Russian Text © O.A. Podkolodnaya, 2014, published in Genetika, 2014, Vol. 50, No. 2, pp. 125–137.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podkolodnaya, O.A. Molecular and genetic aspects of interactions of the circadian clock and the energy-producing substrate metabolism in mammals. Russ J Genet 50, 111–122 (2014). https://doi.org/10.1134/S1022795414020136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414020136

Keywords

Navigation