Skip to main content
Log in

The role of peptidyl-prolyl cis/trans isomerase genes of Arabidopsis thaliana in plant defense during the course of Xanthomonas campestris infection

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Experimental data obtained in this study had shown the involvement of A. thaliana immunophilin genes At2g16600, At4g33060, and At5g48570 in plant defense responses to the Xanthomonas campestris invasion. We had found not only that the expression levels of these genes changed upon bacterial infection, but also that the plant’s resistance to the pathogen was increased if the expression levels of the immunophilin genes were elevated in the host cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knight, H. and Knight, M.R., Abiotic stress signalling pathways: specificity and cross-talk, Trends Plant Sci., 2001, vol. 6, no. 6, pp. 262–267.

    Article  CAS  PubMed  Google Scholar 

  2. Chen, W., Provart, N.J., Glazebrook, J., et al., Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses, Plant Cell, 2002, vol. 14, no. 3, pp. 559–574.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Sekhar, K., Priyanka, B., Reddy, V.D., and Rao, K.V., Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance, Plant Cell Environ., 2010, vol. 33, no. 8, pp. 1324–1338.

    CAS  PubMed  Google Scholar 

  4. Hou, S., Yang, Y., and Zhou, J.M., The multilevel and dynamic interplay between plant and pathogen, Plant Signal Behav., 2009, vol. 4, no. 4, pp. 283–293.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Schiene-Fischer, C. and Yu, C., Receptor accessory folding helper enzymes: the functional role of peptidyl prolyl cis/trans isomerases, FEBS Lett., 2001, vol. 495, nos. 1–2, pp. 1–6.

    Article  CAS  PubMed  Google Scholar 

  6. Hur, S. and Bruice, T.C., The mechanism of cis-trans isomerization of prolyl peptides by cyclophilin, J. Am. Chem. Soc., 2002, vol. 124, no. 25, pp. 7303–7313.

    Article  CAS  PubMed  Google Scholar 

  7. Shaw, P.E., Peptidyl-prolyl isomerases: a new twist to transcription, EMBO Rep., 2002, vol. 3, no. 6, pp. 521–526.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Vespa, L., Vachon, G., Berger, F., et al., The immunophilin-interacting protein AtFIP37 from Arabidopsis is essential for plant development and is involved in trichome endoreduplication, Plant Physiol., 2004, vol. 134, no. 4, pp. 1283–1292.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Cho, E.K., Lee, Y.K., and Hong, C.B., A cyclophilin from Griffithsia japonica has thermoprotective activity and is affected by CsA, Mol. Cells, 2005, vol. 20, no. 1, pp. 142–150.

    CAS  PubMed  Google Scholar 

  10. Hajheidari, M., Abdollahian-Noghabi, M., Askari, H., et al., Proteome analysis of sugar beet leaves under drought stress, Proteomics, 2005, vol. 5, no. 4, pp. 950–960.

    Article  CAS  PubMed  Google Scholar 

  11. Mahfouz, M.M., Kim, S., Delauney, A.J., and Verma, D.P., Arabidopsis target of rapamycin interacts with raptor, which regulates the activity of S6 kinase in response to osmotic stress signals, Plant Cell, 2006, vol. 18, no. 2, pp. 477–490.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Chen, A.P., Wang, G.L., Qu, Z.L., et al., Ectopic expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells, Plant Cell Rep., 2007, vol. 26, no. 2, pp. 237–245.

    Article  CAS  PubMed  Google Scholar 

  13. Kielbowicz-Matuk, A., Rey, P., and Rorat, T., The abundance of a single domain cyclophilin in Solanaceae is regulated as a function of organ type and high temperature and not by other environmental constraints, Physiol. Plant, 2007, vol. 131, no. 3, pp. 387–398.

    Article  CAS  PubMed  Google Scholar 

  14. Laxa, M., Konig, J., Dietz, K.J., and Kandlbinder, A., Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions, Biochem. J., 2007, vol. 401, no. 1, pp. 287–297.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Liu, J., Elmore, J.M., Fuglsang, A.T., et al., RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack, PLoS Biol., 2009, vol. 7, no. 6, p. e1000139.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Meiri, D., Tazat, K., Cohen-Peer, R., et al., Involvement of Arabidopsis ROF2(FKBP65) in thermotolerance, Plant. Mol. Biol., 2010, vol. 72, nos. 1-2, pp. 191–203.

    Article  Google Scholar 

  17. Park, S.C., Lee, J.R., Shin, S.O., et al., Purification and characterization of an antifungal protein, C-FKBP, from Chinese cabbage, J. Agric. Food Chem., 2007, vol. 55, no. 13, pp. 5277–5281.

    Article  CAS  PubMed  Google Scholar 

  18. Godoy, A.V., Lazzaro, A.S., Casalongue, C.A., and Segundo, B.S., Expression of Solanum tuberosum ciclophilin gene is regulated by fungal infection and abiotic stress conditions, Plant Sci., 2000, vol. 152, pp. 123–134.

    Article  CAS  Google Scholar 

  19. Kong, H.Y., Lee, S.C., and Hwang, B.K., Expression of pepper ciclophilin gene is differentially regulated during the pathogen infection and abiotic stress conditions, Physiol. Mol. Plant Pathol., 2001, vol. 59, pp. 189–199.

    Article  CAS  Google Scholar 

  20. He, P., Chintamanani, S., Chen, Z., et al., Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine, Plant J., 2004, vol. 37, no. 4, pp. 589–602.

    Article  CAS  PubMed  Google Scholar 

  21. Romano, P.G., Horton, P., and Gray, J.E., The Arabidopsis cyclophilin gene family, Plant Physiol., 2004, vol. 134, no. 4, pp. 1268–1282.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Aumuller, T., Jahreis, G., Fischer, G., and Schiene-Fischer, C., Role of prolyl cis/trans isomers in cyclophilin-assisted Pseudomonas syringae AvrRpt2 protease activation, Biochemistry, 2010, vol. 49, pp. 1042–1052.

    Article  CAS  PubMed  Google Scholar 

  23. Wesley, S.V., Helliwell, C.A., Smith, N.A., et al., Construct design for efficient, effective and high-throughput gene silencing in plants, Plant J., 2001, vol. 27, no. 6, pp. 581–590.

    Article  CAS  PubMed  Google Scholar 

  24. Gleave, A., A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome, Plant Mol. Biol., 1992, vol. 20, no. 6, pp. 1203–1207.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, P.-Y., Wang, C.-K., Soong, S.-C., and To, K.-Y., Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants, Mol. Breed., 2003, vol. 11, no. 4, pp. 287–293.

    Article  CAS  Google Scholar 

  26. Lee, M. and Yang, Y., Transient expression assay by agroinfiltration of leaves, in Arabidopsis Protocols, Salinas, J. and Sanchez-Serrano, J., Eds., New York: Humana, 2006, vol. 323, pp. 225–229.

    Chapter  Google Scholar 

  27. Swanson, J., Kearney, B., Dahlbeck, D., and Staskawicz, B., Cloned avirulence gene of Xanthomonas campestris pv. vesicatoria complements spontaneous race-change mutants, MPMI, 1988, vol. 1, pp. 5–9.

    Article  Google Scholar 

  28. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method, Methods, 2001, vol. 25, no. 4, pp. 402–408.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Mokryakova.

Additional information

Original Russian Text © M.V. Mokryakova, G.V. Pogorelko, S.A. Bruskin, E.S. Piruzian, I.A. Abdeeva, 2014, published in Genetika, 2014, Vol. 50, No. 2, pp. 157–166.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokryakova, M.V., Pogorelko, G.V., Bruskin, S.A. et al. The role of peptidyl-prolyl cis/trans isomerase genes of Arabidopsis thaliana in plant defense during the course of Xanthomonas campestris infection. Russ J Genet 50, 140–148 (2014). https://doi.org/10.1134/S1022795414020100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414020100

Keywords

Navigation