Skip to main content
Log in

Comparative transcriptome pairwise analysis of spontaneously transformed multipotent stromal cells from human adipose tissue

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Potential markers and the mechanism of the spontaneous transformation of multipotent stromal cells (MSC) with perivascular immunophenotype have been determined. A transcriptome comparative study was performed involving six paired specimens of normal and spontaneously transformed MSC with perivascular immunophenotype, obtained in the first passages following the isolation of adipose tissue of six healthy donors. According to the results obtained using the microarray Illumina HT-12 v4 with the Significance Analysis of Microarrays software, differentially expressed transcripts were revealed and a statistical analysis using Gene Ontology and Molecular Signatures Databases was conducted. The association of the spontaneous transformation of isolated MSC with perivascular immunophenotype with previously identified oncogenic cell transformation pathways (E2F, ATR/ATM, RAS, and RHOA) is suggested and further aims for more detailed study are set. Potential transformation markers, including largely unknown genes and those previously not associated with cancer genes (HSPB6, PLAC9, FEZ1, DTWD1, APH1A, and ATP5L), are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wirths, S., Malenke, E., Kluba, T., et al., Shared cell surface marker expression in mesenchymal stem cells and adult sarcomas, Stem Cells Transl. Med., 2013, vol. 2, no. 1, pp. 53–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Rodriguez, R., Rubio, R., and Menendez, P., Modeling sarcomagenesis using multipotent mesenchymal stem cells, Cell Res., 2012, vol. 22, no. 1, pp. 62–77.

    Article  CAS  PubMed  Google Scholar 

  3. Klopp, A.H., Gupta, A., Spaeth, E., et al., Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth?, Stem Cells, 2011, vol. 29, no. 1, pp. 11–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lazennec, G. and Jorgensen, C., Concise review: adult multipotent stromal cells and cancer: risk or benefit?, Stem Cells, 2008, vol. 26, no. 6, pp. 1387–1394.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Omelchenko, D.O., Rzhaninova, A.A., Fedyunina, I.A., et al., Analysis of chromosome set and aberrations in spontaneously immortalized multipotent mesenchymal stromal cells from different human tissues, Med. Genet., 2012, vol. 11, no. 11, pp. 32–36.

    Google Scholar 

  6. Rzhaninova, A.A., Kulikov, A.V., Spirova, I.A., et al., Preparation and characterization of culture of CD146+ cells from human adipose tissue, Kletochnye Tekhnol. Biol. Med., 2010, no. 1, pp. 3–9.

    Google Scholar 

  7. Du, P., Kibbe, W.A., and Lin, S.M., Lumi: a pipeline for processing illumina microarray, Bioinformatics, 2008, vol. 24, no. 13, pp. 1547–1548.

    Article  CAS  PubMed  Google Scholar 

  8. McClintick, J.N. and Edenberg, H.J., Effects of filtering by present call on analysis of microarray experiments, BMC Bioinform., 2006, vol. 7, no. 1, pp. 49–64.

    Article  Google Scholar 

  9. Miller, J.A., Cai, C., Langfelder, P., et al., Strategies for aggregating gene expression data: the collapseRows R function, BMC Bioinform., 2011, vol. 12, no. 1, pp. 322–334.

    Article  CAS  Google Scholar 

  10. Eden, E., Navon, R., Steinfeld, I., et al., GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists, BMC Bioinform., 2009, vol. 10, no. 1, pp. 48–54.

    Article  Google Scholar 

  11. Subramanian, A., Tamayo, P., Mootha, V.K., et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 43, pp. 15545–15550.

    Article  CAS  PubMed  Google Scholar 

  12. Smith, J., Tho, L.M., Xu, N., and Gillespie, D.A., The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer, Adv. Cancer Res., 2010, vol. 108, pp. 73–112.

    Article  CAS  PubMed  Google Scholar 

  13. Chang, S., Chromosome ends teach unexpected lessons on DNA damage signaling, EMBO J., 2012, vol. 31, no. 16, pp. 3380–3381.

    Article  CAS  PubMed  Google Scholar 

  14. Müller, H. and Helin, K., The E2F transcription factors: key regulators of cell proliferation, Biochim. Biophys. Acta, 2000, vol. 1470, no. 1, pp. 1–12.

    Google Scholar 

  15. van Vlerken, L.E., Kiefer, C.M., Morehouse, C., et al., EZH2 is required for breast and pancreatic cancer stem cell maintenance and can be used as a functional cancer stem cell reporter, Stem Cells Transl. Med., 2013, vol. 2, no. 1, pp. 43–52.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Fridman, A.L. and Tainsky, M.A., Critical pathways in cellular senescence and immortalization revealed by gene expression profiling, Oncogene, 2008, vol. 27, no. 46, pp. 5975–5987.

    Article  CAS  PubMed  Google Scholar 

  17. Huang, G., Eisenberg, R., Yan, M., et al., 15-Hydroxyprostaglandin dehydrogenase is a target of hepatocyte nuclear factor 3beta and a tumor suppressor in lung cancer, Cancer Res., 2008, vol. 68, no. 13, pp. 5040–5048.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Berenjeno, I.M., Núñz, F., and Bustelo, X.R., Transcriptomal profiling of the cellular transformation induced by Rho subfamily GTPases, Oncogene, 2007, vol. 26, no. 29, pp. 4295–4305.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lindvall, C., Hou, M., Komurasaki, T., et al., Molecular characterization of human telomerase reverse trans- criptase-immortalized human fibroblasts by gene expression profiling: activation of the epiregulin gene, Cancer Res., 2003, vol. 63, no. 8, pp. 1743–1747.

    CAS  PubMed  Google Scholar 

  20. Chiaradonna, F., Sacco, E., Manzoni, R., et al., Ras-dependent carbon metabolism and transformation in mouse fibroblasts, Oncogene, 2006, vol. 25, no. 39, pp. 5391–5404.

    Article  CAS  PubMed  Google Scholar 

  21. Ishida, S., Huang, E., Zuzan, H., et al., Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis, Mol. Cell Biol., 2001, vol. 21, no. 14, pp. 4684–4699.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Oxford, G., Smith, S.C., Hampton, G., and Theodorescu, D., Expression profiling of Ral-depleted bladder cancer cells identifies RREB-1 as a novel transcriptional Ral effector, Oncogene, 2007, vol. 26, no. 50, pp. 7143–7152.

    Article  CAS  PubMed  Google Scholar 

  23. Lee, J.H., Horak, C.E., Khanna, C., et al., Alterations in Gemin5 expression contribute to alternative mRNA splicing patterns and tumor cell motility, Cancer Res., 2008, vol. 68, no. 3, pp. 639–644.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lasham, A., Print, C.G., Woolley, A.G., et al., YB-1: oncoprotein, prognostic marker and therapeutic target?, Biochem. J., 2013, vol. 449, no. 1, pp. 11–23.

    Article  CAS  PubMed  Google Scholar 

  25. Thollet, A., Vendrell, J.A., Payen, L., et al., ZNF217 confers resistance to the pro-apoptotic signals of paclitaxel and aberrant expression of Aurora-A in breast cancer cells, Mol. Cancer, 2010, vol. 9, no. 1, pp. 291–307.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Vendrell, J.A., Thollet, A., Nguyen, N.T., et al., ZNF217 is a marker of poor prognosis in breast cancer that drives epithelial-mesenchymal transition and invasion, Cancer Res., 2012, vol. 72, no. 14, pp. 3593–3606.

    Article  CAS  PubMed  Google Scholar 

  27. Zeller, K.I., Jegga, A.G., Aronow, B.J., et al., An integrated database of genes responsive to the Myc onco- genic transcription factor: identification of direct genomic targets, Genome Biol., 2003, vol. 4, no. 10, pp. 1–10.

    Article  Google Scholar 

  28. Kaur, M. and Cole, M.D., MYC acts via the PTEN tumor suppressor to elicit autoregulation and genome-wide gene repression by activation of the Ezh2 methyltransferase, Cancer Res., 2013, vol. 73, no. 2, pp. 695–705.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Okuyama, H., Endo, H., Akashika, T., et al., Downregulation of c-MYC protein levels contributes to cancer cell survival under dual deficiency of oxygen and glucose, Cancer Res., 2010, vol. 70, no. 24, pp. 10213–10223.

    Article  CAS  PubMed  Google Scholar 

  30. Ferreira, B.I., Alonso, J., Carrillo, J., et al., Array CGH and gene-expression profiling reveals distinct genomic instability patterns associated with DNA repair and cell-cycle checkpoint pathways in Ewing’s sarcoma, Oncogene, 2008, vol. 27, no. 14, pp. 2084–2090.

    Article  CAS  PubMed  Google Scholar 

  31. Nielsen, T.O., West, R.B., Linn, S.C., et al., Molecular characterization of soft tissue tumors: a gene expression study, Lancet, 2002, vol. 359, no. 9314, pp. 1301–1307.

    Article  CAS  PubMed  Google Scholar 

  32. Anastassiou, D., Rumjantseva, V., Cheng, W., et al., Human cancer cells express slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo, BMC Cancer, 2011, vol. 11, no. 1, pp. 529–537.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Riggi, N., Suvá, M.L., Suvá, D., et al., EWS-FLI-1 expression triggers a Ewing’s sarcoma initiation program in primary human mesenchymal stem cells, Cancer Res., 2008, vol. 68, no. 7, pp. 2176–2185.

    Article  CAS  PubMed  Google Scholar 

  34. Ren, Y.X., Finckenstein, F.G., Abdueva, D.A., et al., Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations, Cancer Res., 2008, vol. 68, no. 16, pp. 6587–6597.

    Article  CAS  PubMed  Google Scholar 

  35. Novikova, N.I., Rzhaninova, A.A., Skobtsova, L.A., et al., Study of biological safety of cell cultures of mesenchymal stromal cells in immunodeficient mouse lines Nu/Nu B/C, Toksikol. Vestn., 2011, no. 2, pp. 13–19.

    Google Scholar 

  36. Xia, J., Wang, F., Wang, L., and Fan, Q., Elevated serine protease HtrA1 inhibits cell proliferation, reduces invasion, and induces apoptosis in esophageal squamous cell carcinoma by blocking the nuclear factor-κB signaling pathway, Tumour Biol., 2013, vol. 34, no. 1, pp. 317–328.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, N., Eckert, K.A., Zomorrodi, A.R., et al., Down-regulation of HtrA1 activates the epithelial-mesenchymal transition and ATM DNA damage response pathways, PLoS One, 2012, vol. 7, no. 6, p. e39446.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Wang, X., Zhao, T., Huang, W., et al., Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors, Stem Cells, 2009, vol. 27, no. 12, pp. 3021–3031.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Ke, L., Meijering, R.A., Hoogstra-Berends, F., et al., HSPB1, HSPB6, HSPB7 and HSPB8 protect against Rhoa GTPase-induced remodeling in tachypaced atrial myocytes, PLoS One, 2011, vol. 6, no. 6, p. e20395.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Grotsky, D.A., Gonzalez-Suarez, I., Novell, A., et al., BRCA1 loss activates cathepsin L-mediated degradation of 53BP1 in breast cancer cells, J. Cell Biol., 2013, vol. 200, no. 2, pp. 187–202.

    Article  CAS  PubMed  Google Scholar 

  41. Ocaña, O.H., Córcoles, R., Fabra, A., et al., Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1, Cancer Cell, 2012, vol. 22, no. 6, pp. 709–724.

    Article  PubMed  Google Scholar 

  42. Hirohata, S., Wang, L.W., Miyagi, M., et al., Punctin, a novel ADAMTS-like molecule, ADAMTSL-1, in extracellular matrix, J. Biol. Chem., 2002, vol. 277, no. 14, pp. 12182–12189.

    Article  CAS  PubMed  Google Scholar 

  43. Du, J., Takeuchi, H., Leonhard-Melief, C., et al., O-Fucosylation of thrombospondin type 1 repeats restricts epithelial to mesenchymal transition (EMT) and maintains epiblast pluripotency during mouse gastrulation, Dev. Biol., 2010, vol. 346, no. 1, pp. 25–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Humtsoe, J.O., Liu, M., Malik, A.B., and Wary, K.K., Lipid phosphate phosphatase 3 stabilization of beta-catenin induces endothelial cell migration and formation of branching point structures, Mol. Cell Biol., 2010, vol. 30, no. 7, pp. 1593–1606.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Matsumine, A., Shintani, K., Kusuzaki, K., et al., Expression of decorin, a small leucine-rich proteoglycan, as a prognostic factor in soft tissue tumors, J. Surg. Oncol., 2007, vol. 96, no. 5, pp. 411–418.

    Article  CAS  PubMed  Google Scholar 

  46. Goldoni, S. and Iozzo, R.V., Tumor microenvironment: modulation by decorin and related molecules harboring leucine-rich tandem motifs, Int. J. Cancer, 2008, vol. 123, no. 11, pp. 2473–2479.

    Article  CAS  PubMed  Google Scholar 

  47. Pardali, E., van der Schaft, D.W., Wiercinska, E., et al., Critical role of endoglin in tumor cell plasticity of Ewing sarcoma and melanoma, Oncogene, 2011, vol. 30, no. 3, pp. 334–345.

    Article  CAS  PubMed  Google Scholar 

  48. Majid, S.M., Liss, A.S., You, M., and Bose, H.R., The suppression of SH3BGRL is important for v-Rel-mediated transformation, Oncogene, 2006, vol. 25, no. 5, pp. 756–768.

    Article  CAS  PubMed  Google Scholar 

  49. Orso, F., Penna, E., Cimino, D., et al., AP-2alpha and AP-2gamma regulate tumor progression via specific genetic programs, FASEB J., 2008, vol. 22, no. 8, pp. 2702–2714.

    Article  CAS  PubMed  Google Scholar 

  50. Skubitz, K.M., Pambuccian, S., Manivel, J.C., and Skubitz, A.P., Identification of heterogeneity among soft tissue sarcomas by gene expression profiles from different tumors, J. Transl. Med., 2008, vol. 6, no. 1, pp. 23–35.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Santo, E.E., Ebus, M.E., Koster, J., et al., Oncogenic activation of FOXR1 by 11q23 intrachromosomal dele-tion-fusions in neuroblastoma, Oncogene, 2012, vol. 31, no. 12, pp. 1571–1581.

    Article  CAS  PubMed  Google Scholar 

  52. Leandro-García, L.J., Leskelä, S., Landa, I., et al., Tumoral and tissue-specific expression of the major human beta-tubulin isotypes, Cytoskeleton (Hoboken), 2010, vol. 67, no. 4, pp. 214–223.

    Article  Google Scholar 

  53. Hirst, M., Haliday, E., Nakamura, J., and Lou, L., Human GMP synthetase: protein purification, cloning, and functional expression of cDNA, J. Biol. Chem., 1994, vol. 269, no. 38, pp. 23830–23837.

    CAS  PubMed  Google Scholar 

  54. Carnero, A., Blanco-Aparicio, C., Renner, O., et al., The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications, Curr. Cancer Drug Targets, 2008, vol. 8, no. 3, pp. 187–198.

    Article  CAS  PubMed  Google Scholar 

  55. Tiganis, T., Bennett, A.M., Ravichandran, K.S., and Tonks, N.K., Epidermal growth factor receptor and the adaptor protein p52Shc are specific substrates of T-cell protein tyrosine phosphatase, Mol. Cell Biol., 1998, vol. 18, no. 3, pp. 1622–1634.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Omerovic, J., Clague, M.J., and Prior, I.A., Phosphatome profiling reveals PTPN2, PTPRJ and PTEN as potent negative regulators of PKB/Akt activation in Ras-mutated cancer cells, Biochem. J., 2010, vol. 426, no. 1, pp. 65–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Wang, Y.L., Wang, Y., Tong, L., and Wei, Q., Overexpression of calcineurin B subunit (CnB) enhances the oncogenic potential of HEK293 cells, Cancer Sci., 2008, vol. 99, no. 6, pp. 1100–1108.

    Article  CAS  PubMed  Google Scholar 

  58. Kasper, G., Vogel, A., Klaman, I., et al., The human LAPTM4b transcript is upregulated in various types of solid tumors and seems to play a dual functional role during tumor progression, Cancer Lett., 2005, vol. 224, no. 1, pp. 93–103.

    Article  CAS  PubMed  Google Scholar 

  59. Dubash, A.D., Guilluy, C., Srougi, M.C., et al., The small GTPase RhoA localizes to the nucleus and is activated by Net1 and DNA damage signals, PLoS One, 2011, vol. 6, no. 2, p. e17380.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Bennett, G., Sadlier, D., Doran, P.P., et al., A functional and transcriptomic analysis of NET1 bioactivity in gastric cancer, BMC Cancer, 2011, vol. 11, pp. 50–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Chen, L., Li, X.Y., Wang, Y., et al., [Expression and significance of NET-1 protein in hepatocellular carcinoma], Zhonghua Zhong Liu Za Zhi, 2007, vol. 29, no. 12, pp. 917–921.

    CAS  PubMed  Google Scholar 

  62. Qin, H., Carr, H.S., Wu, X., et al., Characterization of the biochemical and transforming properties of the neuroepithelial transforming protein 1, J. Biol. Chem., 2005, vol. 280, no. 9, pp. 7603–7613.

    Article  CAS  PubMed  Google Scholar 

  63. Lee, M.H. and Surh, Y.J., eEF1A2 as a putative oncogene, Ann. N.Y. Acad. Sci., 2009, vol. 1171, pp. 87–93.

    Article  CAS  PubMed  Google Scholar 

  64. Amiri, A., Noei, F., Jeganathan, S., et al., eEF1A2 activates Akt and stimulates Akt-dependent actin remodel- ing, invasion and migration, Oncogene, 2007, vol. 26, no. 21, pp. 3027–3040.

    Article  CAS  PubMed  Google Scholar 

  65. Sun, Y., Wong, N., Guan, Y., et al., The eukaryotic translation elongation factor eEF1A2 induces neoplastic properties and mediates tumorigenic effects of ZNF217 in precursor cells of human ovarian carcinomas, Int. J. Cancer, 2008, vol. 123, no. 8, pp. 1761–1769.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Citi, S., Paschoud, S., Pulimeno, P., et al., The tight junction protein cingulin regulates gene expression and RhoA signaling, Ann. N.Y. Acad. Sci., 2009, vol. 1165, pp. 88–98.

    Article  CAS  PubMed  Google Scholar 

  67. Papageorgis, P., Lambert, A.W., Ozturk, S., et al., Smad signaling is required to maintain epigenetic silencing during breast cancer progression, Cancer Res., 2010, vol. 70, no. 3, pp. 968–978.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. McDowell, C.L., Bryan Sutton, R., and Obermann, W.M., Expression of Hsp90 chaperone [corrected] proteins in human tumor tissue, Int. J. Biol. Macromol., 2009, vol. 45, no. 3, pp. 310–314.

    Article  CAS  PubMed  Google Scholar 

  69. Gronthos, S., McCarty, R., Mrozik, K., et al., Heat shock protein-90 beta is expressed at the surface of multipotential mesenchymal precursor cells: generation of a novel monoclonal antibody, STRO-4, with specificity for mesenchymal precursor cells from human and ovine tissues, Stem Cells Dev., 2009, vol. 18, no. 9, pp. 1253–1262.

    Article  CAS  PubMed  Google Scholar 

  70. Pirone, D.M., Fukuhara, S., Gutkind, J.S., and Burbelo, P.D., SPECs, small binding proteins for Cdc42, J. Biol. Chem., 2000, vol. 275, no. 30, pp. 22650–22656.

    Article  CAS  PubMed  Google Scholar 

  71. Gotoda, T., Matsumura, Y., Kondo, H., et al., Expression of CD44 variants and prognosis in oesophageal squamous cell carcinoma, Gut, 2000, vol. 46, no. 1, pp. 14–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Omelchenko.

Additional information

Original Russian Text © D.O. Omelchenko, A.A. Rzhaninova, D.V. Goldshtein, 2014, published in Genetika, 2014, Vol. 50, No. 1, pp. 106–115.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omelchenko, D.O., Rzhaninova, A.A. & Goldshtein, D.V. Comparative transcriptome pairwise analysis of spontaneously transformed multipotent stromal cells from human adipose tissue. Russ J Genet 50, 96–104 (2014). https://doi.org/10.1134/S1022795414010098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414010098

Keywords

Navigation