Skip to main content
Log in

Cellulose synthase genes that control the fiber formation of flax (Linum usitatissimum L.)

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Four cellulose synthase genes were identified by analysis of their class-specific regions (CSRII) in plants of fiber flax during the “rapid growth” stage. These genes were designated as LusCesA1, LusCesA4, LusCesA7 and LusCesA9. LusCesA4, LusCesA7, and LusCesA9 genes were expressed in the stem; LusCesA1 and LusCesA4 genes were expressed in the apex part of plants; and the LusCesA4 gene was expressed in the leaves of fiber flax. The expression of the LusCesA7 and LusCesA9 genes was specific to the stems of fiber flax. These genes may influence the quality of the flax fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flax: The Genus Linum, Muir, A.D. and Westcott, N.D., Eds., London: Taylor & Francis, 2003.

  2. Charlet, K., Baley, C., Morvan, C., et al., Characteristics of Hermes flax fibers as a function of their location in the stem and the derived unidirectional composites, Composites, Part A, 2007, vol. 38, no. 8, pp. 1912–1921.

    Article  Google Scholar 

  3. Titok, V., Leontiev, V., Shostak, L., and Khotyleva, L., Thermogravimetric analysis of the flax bast fiber bundle, J. Nat. Fibers, 2006, vol. 3. no. 1, pp. 35–41.

    Article  Google Scholar 

  4. Grushetskaya, Z.E., Lemesh, V.A., and Khotyleva, L.V., Development of specific and degenerate primers for CesA genes encoding cellulose synthase in flax (Linum usitatissimum L.), Cytol. Genet., 2010, vol. 44, no. 4, pp. 3–8.

    Article  CAS  Google Scholar 

  5. Doblin, M.S., Kurek, I., Jacob-Wilk, D., and Delmer, D.P., Cellulose biosynthesis in plants: from genes to rosettes, Plant Cell Physiol., 2002, vol. 43, no. 12, pp. 1407–1420.

    Article  CAS  PubMed  Google Scholar 

  6. Delmer, D.P., Cellulose biosynthesis: exciting times for a difficult field of study, Annu. Rev. Plant Physiol., 1999, vol. 50, no. 1, pp. 245–276.

    Article  CAS  Google Scholar 

  7. Gorshkova, T.A., Rastitel’naya kletochnaya stenka kak dinamicheskaya sistema (Plant Cell Wall as a Dynamic System), Moscow: Nauka, 2007.

    Google Scholar 

  8. Hamann, T., Osborne, E., Youngs, H.L., et al., Global expression analysis of CESA and CSL genes in Arabidopsis, Cellulose, 2004, vol. 11, pp. 279–286.

    Article  CAS  Google Scholar 

  9. Kumar, M., Thammannagowda, S., Bulone, V., et al., An update on the nomenclature for the cellulose synthase genes in Populus, Trends Plant Sci., 2009, vol. 14, no. 5, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  10. Plant Cell Separation and Adhesion, Roberts, J.A. and Gonzalez-Carranza, Z., Eds., Oxford: Blackwell, 2007.

  11. Burton, R.A., Farrokhi, N., Bacic, A., and Fincher, G.B., Plant cell wall polysaccharide biosynthesis: real progress in the identification of participating genes, Planta, 2005, vol. 221, no. 3, pp. 309–312.

    Article  CAS  PubMed  Google Scholar 

  12. Dhugga, K.S., Building the wall: genes and enzyme complexes for polysaccharide synthases, Curr. Opin. Plant Biol., 2001, vol. 4, no. 6, pp. 488–493.

    Article  CAS  PubMed  Google Scholar 

  13. Ranik, M. and Myburg, A.A., Six new cellulose synthase genes from Eucalyptus are associated with primary and secondary cell wall biosynthesis, Tree Physiol., 2006, vol. 26, no. 5, pp. 545–556.

    Article  CAS  PubMed  Google Scholar 

  14. Joshi, C.P. and Joshi, C.P., Molecular cloning of ten distinct hypervariable regions from the cellulose synthase gene superfamily in aspen trees, Tree Physiol., 2004, vol. 24, no. 5, pp. 543–550.

    Article  PubMed  Google Scholar 

  15. Sigma-Aldrich, Technical bulletin. http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/Bulletin/t9424bul.Par.0001.File.tmp/t9424bul.pdf. Cited January 30, 2013.

  16. Grushetskaya, Z.E., Galinovskii, D.V., Lemesh, V.A., et al., Molecular-genetic structure of the cellulose synthase genes and their role in development of the plant cell wall, Tr. Beloruss. Gos. Tekhnol. Univ., Ser. 4, 2008, no. 16, pp. 158–160.

    Google Scholar 

  17. Joshi, C.P. and Mansfield, S.D., The cellulose paradox—simple molecule, complex biosynthesis, Curr. Opin. Plant Biol., 2007, vol. 10, no. 3, pp. 220–226.

    Article  CAS  PubMed  Google Scholar 

  18. Thermo scientific, pTZ57R Plasmid Map, http://www.thermoscientificbio.com/uploadedFiles/Resources/pTZ57R-map.pdf. Cited January 30, 2013.

  19. National Research Council Canada, Flax Genomic Resources, http://bioinfo.pbi.nrc.ca/portal/flax. Cited November 22, 2011.

  20. The Arabidopsis genome initiative, Nature, 2000, vol. 408, no. 6814, pp. 796–815.

    Google Scholar 

  21. Janson, S. and Douglas, C.J., Populus: a model system for plant biology, Annu. Rev. Plant Biol., 2007, vol. 58, pp. 435–458.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Galinousky.

Additional information

Original Russian Text © D.V. Galinousky, N.V. Anisimova, A.P. Raiski, V.N. Leontiev, V.V. Titok, L.V. Khotyleva, 2014, published in Genetika, 2014, Vol. 50, No. 1, pp. 26–34.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galinousky, D.V., Anisimova, N.V., Raiski, A.P. et al. Cellulose synthase genes that control the fiber formation of flax (Linum usitatissimum L.). Russ J Genet 50, 20–27 (2014). https://doi.org/10.1134/S1022795414010050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414010050

Keywords

Navigation