Russian Journal of Genetics

, Volume 49, Issue 10, pp 1004–1012 | Cite as

Interactions of [NSI +] prion-like determinant with SUP35 and VTS1 genes in Saccharomyces cerevisiae

  • A. A. Nizhnikov
  • A. M. Kondrashkina
  • A. P. Galkin
Genetics of Microorganisms


Previously we characterized [NSI +], determinant, that possesses the features of a yeast prion. This determinant causes the nonsense suppression in strains that bear different N-substituted variants of Sup35p, which is a translation release factor eRF3. As a result of the genomic screen, we identified VTS1, the overexpression of which is a phenotypic copy of [NSI +]. Here, we analyzed the influence of SUP35 and VTS1 on [NSI +]. We demonstrated nonsense suppression in the [NSI +] strains, which appears when SUP35 expression was decreased or against a background of general defects in the fidelity of translation termination. [NSI +] has also been shown to increase VTS1 mRNA amounts. These findings facilitate the insight into the mechanisms of nonsense suppression in the [NSI +] strains and narrow the range of candidates for [NSI +] determinant.


Aminoglycoside Antibiotic D931 Strain Phenotypic Manifestation Yeast Prion Nonsense Suppression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wickner, R.B., [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae, Science, 1994, vol. 264, pp. 566–569.PubMedCrossRefGoogle Scholar
  2. 2.
    Derkatch, I.L., Bradley, M.E., Hong, J.Y., and Liebman, S.W., Prions affect the appearance of other prions: The story of [PIN], Cell, 2001, vol. 106, pp. 171–182.PubMedCrossRefGoogle Scholar
  3. 3.
    Derkatch, I.L., Bradley, M.E., Zhou, P., et al., Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae, Genetics, 1997, vol. 147, pp. 507–519.PubMedGoogle Scholar
  4. 4.
    Du, Z., Park, K.W., Yu, H., et al., Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae, Nat. Genet., 2008, vol. 40, pp. 460–465.PubMedCrossRefGoogle Scholar
  5. 5.
    Alberti, S., Halfmann, R., King, O., et al., A systematic survey identifies prions and illuminates sequence features of prionogenic proteins, Cell, 2009, vol. 137, pp. 146–158.PubMedCrossRefGoogle Scholar
  6. 6.
    Patel, B.K. and Liebman, S.W., “Prion-proof” for [PIN+]: infection with in vitro-made amyloid aggregates of Rnq1p-(132–405) induces [PIN+], J. Mol. Biol., 2007, vol. 365, pp. 773–782.PubMedCrossRefGoogle Scholar
  7. 7.
    Rogoza, T., Goginashvili, A., Rodionova, S., et al., Non-Mendelian determinant [ISP+] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 10573–10577.PubMedCrossRefGoogle Scholar
  8. 8.
    Halfmann, R., Wright, J.R., Alberti, S., et al., Prion formation by a yeast GLFG nucleoporin, Prion, 2012, vol. 6, pp. 391–399.PubMedCrossRefGoogle Scholar
  9. 9.
    Suzuki, G., Shimazu, N., and Tanaka, M., A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress, Science, 2012, vol. 336, pp. 355–359.PubMedCrossRefGoogle Scholar
  10. 10.
    Osherovich, L.Z. and Weissman, J.S., Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion, Cell, 2001, vol. 106, pp. 183–194.PubMedCrossRefGoogle Scholar
  11. 11.
    Roberts, B.T. and Wickner, R.B., Heritable activity: a prion that propagates by covalent autoactivation, Genes Dev., 2003, vol. 17, pp. 2083–2087.PubMedCrossRefGoogle Scholar
  12. 12.
    Brown, J.C. and Lindquist, S., A heritable switch in carbon source utilization driven by an unusual yeast prion, Genes Dev., 2009, vol. 23, pp. 2320–2332.PubMedCrossRefGoogle Scholar
  13. 13.
    Yang, W., Yang, H., and Tien, P., In vitro self-propagation of recombinant PrPSc-like conformation generated in the yeast cytoplasm, FEBS Lett., 2006, vol. 580, pp. 4231–4235.PubMedCrossRefGoogle Scholar
  14. 14.
    Serio, T.R., Cashikar, A.G., Kowal, A., et al., Nucleated conformational conversion and the replication of conformational information by a prion determinant, Science, 2000, vol. 289, pp. 1317–1321.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhouravleva, G., Frolova, L., Le Goff, X., et al., Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3, EMBO J., 1995, vol. 14, pp. 4065–4072.PubMedGoogle Scholar
  16. 16.
    Radchenko, E., Rogoza, T., Khokhrina, M., et al., SUP35 expression is enhanced in yeast containing [ISP+], a prion form of the transcriptional regulator Sfp1, Prion, 2011, vol. 5, pp. 317–322.PubMedGoogle Scholar
  17. 17.
    Saifitdinova, A.F., Nizhnikov, A.A., Lada, A.G., et al., [NSI +]: a novel non-Mendelian suppressor determinant in Saccharomyces cerevisiae, Curr. Genet., 2010, vol. 56, pp. 467–478.PubMedCrossRefGoogle Scholar
  18. 18.
    Nizhnikov, A.A., Magomedova, Z.M., Rubel, A.A., et al., [NSI +] determinant has a pleiotropic phenotypic manifestation that is modulated by SUP35, SUP45, and VTS1 genes, Curr. Genet., 2012, vol. 58, pp. 35–47.PubMedCrossRefGoogle Scholar
  19. 19.
    Kaiser, C., Michaelis, S., and Mitchell, A., Methods in Yeast Genetics, New York: Cold Spring Harbor Lab., 1994.Google Scholar
  20. 20.
    Hanahan, D., DNA Cloning: A Practical Approach, IRL Press, 1985.Google Scholar
  21. 21.
    Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989, 2nd ed.Google Scholar
  22. 22.
    Zakharov, I.A., Kozhin, S.A., Kozhina, T.A., and Fedorova, I.V., Sbornik metodik po genetike drozhzheisakharomitsetov, (Methods in Yeast Saccharomyces cerevisiae Genetics), Leningrad: Nauka, 1984.Google Scholar
  23. 23.
    Sherman, F., Fink, G.R., and Hancks, J.B., Methods in Yeast Genetics, New York: Cold Spring Harbor Lab., 1986.Google Scholar
  24. 24.
    Rubel, A.A., Saifitdinova, A.F., Lada, A.G., et al., Yeast chaperone Hsp104 controls gene expression at the posttranscriptional level, Mol. Biol. (Moscow), 2008, vol. 42, pp. 123–130.CrossRefGoogle Scholar
  25. 25.
    Newnam, G.P., Wegrzyn, R.D., Lindquist, S.L., and Chernoff, Y.O., Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing, Mol. Cell Biol., 1999, vol. 19, pp. 1325–1333.PubMedGoogle Scholar
  26. 26.
    Bradford, M.M., Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.PubMedCrossRefGoogle Scholar
  27. 27.
    Chabelskaya, S., Kiktev, D., Inge-Vechtomov, S., et al., Nonsense mutations in the essential gene SUP35 of Saccharomyces cerevisiae are non-lethal, Mol. Genet. Genomics, vol. 272, pp. 297–307.Google Scholar
  28. 28.
    Livak, K. and Schmittgen, T., Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method, Methods, 2001, vol. 25, pp. 402–408.PubMedCrossRefGoogle Scholar
  29. 29.
    Bonneaud, N., Ozier-Kalogeropoulos, O., Li, G.Y., et al., A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors, Yeast, 1991, vol. 7, pp. 609–615.PubMedCrossRefGoogle Scholar
  30. 30.
    Vicens, Q. and Westh, E., Crystal structure of paromomycin docked into the eubacterial ribosomal decoding a site, Structure, 2001, vol. 9, pp. 647–658.PubMedCrossRefGoogle Scholar
  31. 31.
    Inge-Vechtomov, S.G., Reversions to prototrophy in yeast, requiring adenine, Vestn. Leningr. Univ., 1964, vol. 9, pp. 112–117.Google Scholar
  32. 32.
    Ivanov, M.S., Ratchenko, E.A., and Mironova, L.N., The protein complex Ppz1p/Hal3p and nonsense suppression efficiency in the yeast Saccharomyces cerevisiae, Mol. Biol. (Moscow), 2010, vol. 44, pp. 1018–1026.Google Scholar
  33. 33.
    Ono, B., Yoshida, R., Kamiya, K., and Sugimoto, T., Suppression of termination mutations caused by defects of the NMD machinery in Saccharomyces cerevisiae, Genes Genet. Syst., 2005, vol. 80, pp. 311–316.PubMedCrossRefGoogle Scholar
  34. 34.
    Nizhnikov, A.A., Magomedova, Z.M., Saifitdinova, A.F., et al., Identification of genes encoding potentially amyloidogenic proteins that participate in the regulation of nonsense suppression in yeast Saccharomyces cerevisiae, Ekol. Genet., 2011, vol. 9, pp. 79–86.Google Scholar
  35. 35.
    Hosoda, N., Kobayashi, T., Uchida, N., et al., Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation, J. Biol. Chem., 2003, vol. 278, pp. 38287–38291.PubMedCrossRefGoogle Scholar
  36. 36.
    Aviv, T., Lin, Z., Ben-Ari, G., et al., Sequence-specific recognition of RNA hairpins by the SAM domain of Vts1p, Nat. Struct. Mol. Biol., 2006, vol. 13, pp. 168–176.PubMedCrossRefGoogle Scholar
  37. 37.
    Rendl, L.M., Bieman, M.A., Vari, H.K., and Smibert, C.A., The eIF4E-binding protein Eap1p functions in Vts1p-mediated transcript decay, PLoS One, 2012, vol. 7, p. e47121.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  • A. A. Nizhnikov
    • 1
    • 2
  • A. M. Kondrashkina
    • 2
  • A. P. Galkin
    • 1
    • 2
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Department of Genetics and BiotechnologySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations