Large-scale development of PIP and SSR markers and their complementary applied in Nicotiana


PIP (Potential Intron Polymorphism) and SSR (Simple Sequence Repeats) were used in many species, but large-scale development and combined use of these two markers have not been reported in tobacco. In this study, a total of 12,388 PIP and 76,848 SSR markers were designed and uploaded to a webaccessible database ( E-PCR analysis showed that PIP and SSR rarely over-lapped and were strongly complementary in the tobacco genome. The density of markers was 3.07 PIP and 1.72 SSR per 10 kb of the known sequences. A total of 153 and 166 alleles were detected by 22 PIP and 22 SSR markers in 64 Nicotiana accessions. SSR produced higher PIC (polymorphism information content) values and identified more alleles than PIP, whereas PIP could identify larger numbers of rare alleles. Mantel testing demonstrated a high correlation coefficient (r = 0.949, P < 0.001) between PIP and SSR. The UPGMA dendrogram created from the combined PIP and SSR markers was clearer and more reliable than the individual PIP or SSR dendrograms. It suggested that PIP and SSR can make up the deficiency of molecular markers not only in tobacco but other plant.

This is a preview of subscription content, log in to check access.


  1. 1.

    Arslan, B. and Okumus, A., Genetic and geographic polymorphism of cultivated tobaccos (Nicotiana tabacum) in Turkey, Russ. J. Genet., 2006, vol. 42, no. 6, pp. 667–671.

    Article  CAS  Google Scholar 

  2. 2.

    Lim, K.Y., Matyasek, R., Kovarik, A., and Leitch, A.R., Genome evolution in allotetraploid Nicotiana, Biol. J. Linn. Soc., 2004, vol. 82, no. 4, pp. 599–606.

    Article  Google Scholar 

  3. 3.

    Knapp, S., Chase, M.W., and Clarkson, J.J., Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae), Taxon, 2004, vol. 53, no. 1, pp. 73–82.

    Article  Google Scholar 

  4. 4.

    Goodspeed, T.H., The Genus Nicotiana, Waltham: Mass. Chronica Botanica, 1954.

    Google Scholar 

  5. 5.

    Arumuganathan, K. and Earle, E., Nuclear DNA content of some important plant species, Plant Mol. Biol. Rep., 1991, vol. 9, no. 3, pp. 208–218.

    Article  CAS  Google Scholar 

  6. 6.

    Lewis, R.S., Nicotiana Wild Crop Relatives: Genomic and Breeding Resources, Berlin: Springer-Verlag, 2011.

    Google Scholar 

  7. 7.

    Bindler, G., van der Hoeven, R., Gunduz, I., et al., A microsatellite marker based linkage map of tobacco, Theor. Appl. Genet., 2007, vol. 114, no. 2, pp. 341–349.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Ren, N. and Timko, M.P., AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species, Genome, 2001, vol. 44, no. 4, pp. 559–571.

    PubMed  CAS  Google Scholar 

  9. 9.

    Zhang, H.Y., Liu, X.Z., He, C.S., and Yang, Y.M., Genetic diversity among flue-cured tobacco cultivars based on RAPD and AFLP markers, Braz. Arch. Biol. Technol., 2008, vol. 51, pp. 1097–1101.

    Article  CAS  Google Scholar 

  10. 10.

    Yang, B.C., Xiao, B.G., Chen, X.J., and Shi, C.H., Genetic diversity of flue-cured tobacco varieties based on ISSR markers, Yi Chuan, 2005, vol. 27, no. 5, pp. 753–758.

    PubMed  CAS  Google Scholar 

  11. 11.

    Tóth, G., Gáspári, Z., and Jurka, J., Microsatellites in different eukaryotic genomes: Survey and analysis, Genome Res., 2000, vol. 10, no. 7, pp. 967–981.

    PubMed  Article  Google Scholar 

  12. 12.

    Powell, W., Morgante, M., Andre, C., et al., The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis, Mol. Breed., 1996, vol. 2, no. 3, pp. 225–238.

    Article  CAS  Google Scholar 

  13. 13.

    Davalieva, K., Maleva, I., Filiposki, K., et al., Genetic variability of Macedonian tobacco varieties determined by microsatellite marker analysis, Diversity, 2010, vol. 2, no. 4, pp. 439–449.

    Article  CAS  Google Scholar 

  14. 14.

    Moon, H.S., Nifong, J.M., Nicholson, J.S., et al., Microsatellite-based analysis of tobacco (Nicotiana tabacum L.) genetic resources, Crop Sci., 2009, vol. 49, no. 6, pp. 2149–2159.

    Article  CAS  Google Scholar 

  15. 15.

    Moon, H.S., Nifong, J.M., Heineman, A., et al., Changes in genetic diversity of U.S. flue-cured tobacco germplasm over seven decades of cultivar development, Crop Sci., 2009, vol. 49, no. 2, pp. 498–508.

    Article  Google Scholar 

  16. 16.

    Moon, H.S., Nicholson, J.S., and Lewis, R.S., Use of transferable Nicotiana tabacum L. microsatellite markers for investigating genetic diversity in the genus Nicotiana, Genome, 2008, vol. 51, no. 8, pp. 547–559.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Bindler, G., Plieske, J., Bakaher, N., et al., A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development, Theor. Appl. Genet., 2011, vol. 123, no. 2, pp. 219–230.

    PubMed  Article  Google Scholar 

  18. 18.

    Wang, X.S., Zhao, X.Q., Zhu, J., and Wu, W.R., Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.), DNA Res., 2006, vol. 12, no. 6, pp. 417–427.

    Article  CAS  Google Scholar 

  19. 19.

    Zhao, X.Q., Yang, L., Zheng, Y., et al., Subspecies-specific intron length polymorphism markers reveal clear genetic differentiation in common wild rice (Oryza rufipogon L.) in relation to the domestication of cultivated rice (O. sativa L.). J. Genet. Genomics, 2009, vol. 36, no. 7, pp. 435–442.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Huang, M., Xie, F.M., Chen, L.Y., et al., Comparative analysis of genetic diversity and structure in rice using 1LP and SSR markers, Rice Sci., 2010, vol. 17, no. 4, pp. 257–268.

    Article  Google Scholar 

  21. 21.

    Dong, Q., Schlueter, S.D., and Brendel, V., Plant- GDB, plant genome database and analysis tools, Nucleic Acids Res., 2004, vol. 32, pp. D354–D359.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Yang, L., Jin, G., Zhao, X.Q., et al., PIP: A database of potential intron polymorphism markers, Bioinformatics, 2007, vol. 23, no. 16, pp. 2174–2177.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Wang, Y.Y., Chen, J., Francis, D., et al., Discovery of intron polymorphisms in cultivated tomato using both tomato and Arabidopsis genomic information, Theor. Appl. Genet., 2010, vol. 121, no. 7, pp. 1199–1207.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Chen, X., Zhang, G., and Wu, W., Investigation and utilization of intron length polymorphisms in conifers, New For., 2011, vol. 41, no. 3, pp. 379–388.

    Article  Google Scholar 

  25. 25.

    Liu, H.L., Lin, Y.A., Chen, Y., et al., Genome-scale identification of resistance gene analogs and the development of their intron length polymorphism markers in maize, Mol. Breed., 2011, pp. 1–11.

    Google Scholar 

  26. 26.

    Murray, M.G. and Thompson, W.F., Rapid isolation of high molecular weight plant DNA, Nucleic Acids Res., 1980, vol. 8, no. 19, pp. 4321–4326.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Rozen, S. and Skaletsky, H., Primer3 on the www for general users and for biologist programmers, Methods Mol. Biol., 2000, vol. 132, pp. 365–86.

    PubMed  CAS  Google Scholar 

  28. 28.

    Schuler, G.D., Sequence mapping by electronic PCR, Genome Res., 1997, vol. 7, no. 5, pp. 541–550.

    PubMed  CAS  Google Scholar 

  29. 29.

    Saal, B. and Wricke, G., Development of simple sequence repeat markers in rye (Secale cereale L.), Genome, 1999, vol. 42, no. 5, pp. 964–972.

    PubMed  CAS  Google Scholar 

  30. 30.

    Nei, M., Analysis of gene diversity in subdivided populations, Proc. Natl. Acad. Sci. U.S.A., 1973, vol. 70, no. 12, pp. 3321–3323.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Nei, M. and Li, W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci. U.S.A., 1979, vol. 76, no. 10, pp. 5269–5273.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Mantel, N., The detection of disease clustering and a generalized regression approach, Cancer Res., 1967, vol. 27, no. 2, pp. 209–220.

    PubMed  CAS  Google Scholar 

  33. 33.

    Rohlf, J.F., NTSYSpc: Numerical Taxonomy and Multi-variate Analysis System, Setauket: Exeter Software, 2000.

    Google Scholar 

  34. 34.

    Hampl, V., Pavlicek, A., and Flegr, J., Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree: Application to trichomonad parasites, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, no. 3, pp. 731–735.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Ali, M., Rajewski, J., Baenziger, P., et al., Assessment of genetic diversity and relationship among a collection of U.S. sweet sorghum germplasm by SSR markers, Mol. Breed., 2008, vol. 21, no. 4, pp. 497–509.

    Article  CAS  Google Scholar 

  36. 36.

    Bowcock, A.M., Ruizlinares, A., Tomfohrde, J., et al., High-resolution of human evolutionary trees with polymorphic microsatellites, Nature, 1994, vol. 368, no. 6470, pp. 455–457.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Lewis, R. and Nicholson, J., Aspects of the evolution of Nicotiana tabacum L. and the status of the United States Nicotiana germplasm collection, Genet. Resour. Crop. Evol., 2007, vol. 54, no. 4, pp. 727–740.

    Article  Google Scholar 

  38. 38.

    Julio, E., Verrier, J.L., and de Borne, F., Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L., Theor. Appl. Genet., 2006, vol. 112, no. 2, pp. 335–346.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to L. Huang.

Additional information

The article is published in the original.

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, L., Cao, H., Yang, L. et al. Large-scale development of PIP and SSR markers and their complementary applied in Nicotiana . Russ J Genet 49, 827–838 (2013).

Download citation


  • Polymorphism Information Content
  • Nicotiana Tabacum
  • Large Scale Development
  • Tobacco Genome
  • Tobacco Type