Skip to main content
Log in

Genetic characterization of Colombian Brahman cattle using microsatellites markers

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genetic structure and diversity of 3789 animals of the Brahman breed from 23 Colombian regions were assessed. Considering the Brahman Zebu cattle as a single population, the multilocus test based on the HW equilibrium, shows significant differences (P < 0.001). Genetic characterization made on the cattle population allowed to examine the genetic variability, calculating a H o = 0.6621. Brahman population in Colombia was a small subdivision wthin populations (F it = 0.045), a geographic subdivision almost non-existent or low differentiation (F st = 0.003) and the F is calculated (0.042) indicates no detriment to the variability in the population, despite the narrow mating takes place or there is a force that causes the variability is sustained without inbreeding actually affect the cattle population. The outcomes of multivariate analyses, Bayesian inferences and interindividual genetic distances suggested that there is no genetic sub-structure in the population, because of the high rate of animal migration among regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edwards, C.J., Baird, J.F., and MacHugh, D.E., Taurine and zebu admixture in Near Eastern cattle: a comparison of mitochondrial, autosomal, and Y-chromosomal data, Anim. Genet., 2007, vol. 38, pp. 520–524.

    Article  PubMed  CAS  Google Scholar 

  2. Hansen, P.J., Physiological and cellular adaptations of zebu cattle to thermal stress, Anim. Reprod. Sci., 2004, vol. 82–83, pp. 349–360.

    Article  PubMed  Google Scholar 

  3. Meirelles, F.V., Rosa, A.J.M., Lôbo, R.B., et al., Is the zebu really Bos indicus? Genet. Mol. Biol., 1999, vol. 22, pp. 543–546.

    Article  CAS  Google Scholar 

  4. Novoa, M.A. and Usaquén, W., Population genetic analysis of the Brahman cattle (Bos indicus) in Colombia with microsatellite markers, J. Anim. Breed. Genet., 2010, vol. 127, pp. 161–168.

    Article  PubMed  CAS  Google Scholar 

  5. Blott, S.C., Williams, J.L., Haley, C.S., Genetic relationships among European cattle breeds, Anim. Genet., 1999, vol. 29, pp. 273–282.

    Article  Google Scholar 

  6. Cañon, J., Alexandrino, P., Bessa, I., et al., Phylogenetic analysis: models and estimation procedure, Am. J. Hum. Genet., 1967, vol. 19, pp. 233–257.

    Google Scholar 

  7. Kantanen, J., Olsaker, I., Holm, L.E., et al., Genetic diversity and population structure of 20 North European cattle breeds, J. Hered., 2000, vol. 91, pp 446–457.

    Article  PubMed  CAS  Google Scholar 

  8. Li, M.H., Tapio, I., Vilkki, J., et al., The genetic structure of cattle populations (Bos taurus) in northern Eurasia and the neighboring Near Eastern regions: implications for breeding strategies and conservation, Mol. Ecol., 2007, vol. 16, pp. 3839–3853.

    Article  PubMed  Google Scholar 

  9. MacHugh, D.E., Shriver, M.D., Loftus, R.T., et al., Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus), Genetics, 1997, vol. 146, pp. 1071–1086.

    PubMed  CAS  Google Scholar 

  10. Troy, C.S., MacHugh, D.E., Bailey, J.F., et al., Genetic evidence for Near-Eastern origins of European cattle, Nature, 2001, vol. 410, pp. 1088–1091.

    Article  PubMed  CAS  Google Scholar 

  11. Freeman, A.R., Meghen, C.M., MacHugh, D.E., et al., Admixture and diversity in West African cattle populations., Mol. Ecol., 2004, vol. 13, pp. 3477–3487.

    Article  PubMed  CAS  Google Scholar 

  12. Ibeagha-Awemu, E.M. and Erhardt, G., Genetic structure and differentiation of 12 African Bos indicus and Bos taurus cattle breeds, inferred from protein and microsatellite polymorphisms, J. Anim. Breed. Genet., 2005, vol. 122, pp. 12–20.

    Article  PubMed  CAS  Google Scholar 

  13. Kumar, P., Freeman A.R., Loftus R.T., et al., Admixture analysis of South Asian cattle, Heredity, 2003, vol. 91, pp. 43–50.

    Article  PubMed  CAS  Google Scholar 

  14. Loftus, R.T., MacHugh, D.E., Bradley, D.G., et al., Evidence for two independent domestications of cattle, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, pp. 2757–2761.

    Article  PubMed  CAS  Google Scholar 

  15. Metta, M., Kanginakudru, S., Gudiseva, N., et al., Genetic characterization of the Indian cattle breeds, Ongole and Deoni (Bos indicus), using microsatellite markers-a preliminary study, BMC Genet., 2004, vol 5, p. 16.

    Article  PubMed  Google Scholar 

  16. Bicalho, H.M.S., Pimenta, C.G., Mendes, I.K.P., et al., Determination of ancestral proportions in synthetic bovine breeds using commonly employed microsatellite markers, Genet. Mol. Res., 2006, vol. 5, pp. 432–437.

    PubMed  CAS  Google Scholar 

  17. Brenneman, R.A., Chase, C.C., Olson, T.A., et al., Genetic diversity among Angus, American Brahman, Senepol and Romosinuano cattle breeds, Anim. Genet., 2007, vol. 38, pp. 50–53.

    Article  PubMed  CAS  Google Scholar 

  18. Cervini, M., Henrique-Silva, F., Morati, N., et al., Genetic variability of 10 microsatellite markers in the characterization of Brazilian Nellore cattle (Bos indicus), Genet. Mol. Biol., 2006, vol. 29, pp. 486–490.

    Article  CAS  Google Scholar 

  19. Egito, A.A., Paiva, S.R., Albuquerque, M.S., et al., Microsatellite based genetic diversity and relationships among ten Creole and commercial cattle breeds raised in Brazil, BMC Genet., 2007, vol. 8, p. 83.

    Article  PubMed  Google Scholar 

  20. Amos, W., Hoffman, J.I., Frodsham, A., et al., Automated binning of microsatellite alleles: problems and solutions, Mol. Ecol. Notes, 2006, vol. 7, pp. 10–14.

    Article  Google Scholar 

  21. Raymond, M. and Rousset, F., An exact test for population differentiation, Evolution, 1995, vol. 49, pp.1280–1283.

    Article  Google Scholar 

  22. Guo, S. and Thompson, E.A., Performing the exact test of Hardy-Weinberg proportion for multiple alleles, Biometrics, 1992, vol. 48, pp. 361–372.

    Article  PubMed  CAS  Google Scholar 

  23. Weir, B.S. and Cockerham, C.C., Estimating F statistics for the analysis of population structure, Evolution, 1984, vol. 38, pp. 1358–1370.

    Article  Google Scholar 

  24. Marshall, T.C., Slate, J., Kruuk, L.E., et al., Statistical confidence for likelihood-based paternity inference in natural populations, Mol. Ecol., 1998, vol. 7, pp. 639–655.

    Article  PubMed  CAS  Google Scholar 

  25. Jamieson, A. and Taylor, S.C., Comparisons of three probability formulae for parentage exclusion, Anim. Genet., 1997, vol. 28, pp. 397–400.

    Article  PubMed  CAS  Google Scholar 

  26. Nei, M., Genetic distance between populations, Am. Nat., 1972, vol. 106, pp. 283–292.

    Article  Google Scholar 

  27. Shriver, M.D., Jin, L., Boerwinkle, E., et al., A novel measure of genetic distance for highly polymorphic tandem repeat loci, Mol. Biol. Evol., 1995, vol. 12, pp. 914–920.

    PubMed  CAS  Google Scholar 

  28. Page, R.D., TREEVIEW: an application to display phylogenetic trees on personal computers, Comput. Appl. Biosci., 1996, vol. 12, pp. 357–358.

    PubMed  CAS  Google Scholar 

  29. Pritchard, J.K., Stephens, M., and Donnelly, P, Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945–959.

    PubMed  CAS  Google Scholar 

  30. Falush, D., Stephens, M. and Pritchard, J.K., Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies, Genetics, 2003, vol. 164, pp. 1567–1587.

    PubMed  CAS  Google Scholar 

  31. Liron, J.P., Ripoli, M.V., Garcia, P.P., Assignment of paternity in a judicial dispute between two neighbor Holstein dairy farmers, J. Forensic Sci., 2004, vol. 49, pp. 96–98.

    Article  PubMed  Google Scholar 

  32. Maudet, C., Luikart, G. and Taberlet, P., Genetic diversity and assignment tests among seven French cattle breeds based on microsatellite DNA analysis, J. Anim. Sci., 2002, vol. 80, pp. 942–950.

    PubMed  CAS  Google Scholar 

  33. Martinez, R., Garcia, D., Gallego, J., et al., Genetic variability in Colombian Creole cattle populations estimated by pedigree information, J. Anim. Sci., 2008, vol. 86, pp. 545–552.

    Article  PubMed  CAS  Google Scholar 

  34. Cavalli-Sforza, L.L. and Edwards, A.W.F., Phylogenetic analysis: models and estimation procedures, Evolution, 1967, vol. 21, pp. 550–570.

    Article  Google Scholar 

  35. Queller, D.C. and Goodnight, K.F., Estimating relatedness using genetic markers, Evolution, 1989, vol. 43, pp. 258–275.

    Article  Google Scholar 

  36. Pamilo, P., Genotypic correlation and regression in social groups: multiple alleles, multiple loci and subdivided populations, Genetics, 1984, vol. 107, pp. 307–320.

    PubMed  CAS  Google Scholar 

  37. Pamilo, P., Effect of inbreeding on genetic relatedness, Hereditas, 1985, vol. 103, pp. 195–200.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Gómez.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, Y.M., Fernández, M., Rivera, D. et al. Genetic characterization of Colombian Brahman cattle using microsatellites markers. Russ J Genet 49, 737–745 (2013). https://doi.org/10.1134/S1022795413070041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795413070041

Keywords

Navigation