Advertisement

Russian Journal of Genetics

, Volume 49, Issue 6, pp 681–684 | Cite as

Methylation profile of INK4B-ARF-INK4A locus in atherosclerosis

  • M. S. NazarenkoEmail author
  • A. V. Markov
  • I. N. Lebedev
  • A. A. Sleptsov
  • J. A. Koroleva
  • A. V. Frolov
  • O. L. Barbarash
  • L. S. Barbarash
  • V. P. Puzirev
Short Communication
  • 75 Downloads

Abstract

Single-nucleotide polymorphisms (SNPs) in the 9p21.3 locus have recently been demonstrated to be strongly associated with atherosclerosis. However, the pathophysiology of this locus is insufficiently studied. Here, the methylation profile of the nearest mapped genes for cyclin-dependent kinase inhibitors CDKN2A (p16INK4a, p14ARF) and CDKN2B (p15INK4b) in the tissues of the carotid artery in patients with atherosclerosis was evaluated for the first time. Aberrant DNA methylation of the analyzed loci was not established in either the atherosclerotic plaques or in the tissues from the macroscopically intact vascular wall in the same patients.

Keywords

Methylation Profile Methylation Index CDKN2B Gene Vascular Smooth Muscle Cell Apoptosis Hyperc Holesteremia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wellcome Trust Case Control Consortium: Genomewide association study of 14.000 cases of seven common diseases and 3.000 shared controls, Nature, 2007, vol. 447, no. 7145, pp. 661–678.Google Scholar
  2. 2.
    Helgadottir, A., Thorleifsson, G., Manolescu, A., et al., A common variant on chromosome 9p21 affects the risk of myocardial infarction, Science, 2007, vol. 316, no. 5830, pp. 1491–1493.PubMedCrossRefGoogle Scholar
  3. 3.
    McPherson, R., Pertsemlidis, A., Kavaslar, N., et al., A common allele on chromosome 9 associated with coronary heart disease, Science, 2007, vol. 316, no. 5830, pp. 1488–1491.PubMedCrossRefGoogle Scholar
  4. 4.
    Samani, N.J., Erdmann, J., Hall, A.S., et al., Genomewide association analysis of coronary artery disease, N. Engl. J. Med., 2007, vol. 357, no. 5, pp. 443–453.PubMedCrossRefGoogle Scholar
  5. 5.
    Cunnington, M.S. and Keavney, B., Genetic mechanisms mediating atherosclerosis susceptibility at the chromosome 9p21 locus, Curr. Atheroscler. Rep., 2011, vol. 13, no. 3, pp. 193–201.PubMedCrossRefGoogle Scholar
  6. 6.
    Popov, N. and Gil, J., Epigenetic regulation of the INK4b-ARF-INK4a locus: in sickness and in health, Epigenetics, 2010, vol. 5, no. 8, pp. 685–690.PubMedCrossRefGoogle Scholar
  7. 7.
    Fuster, J.J., Fernandez, P., Gonzalez-Navarro, H., et al., Control of cell proliferation in atherosclerosis: insights from animal models and human studies, Cardiovasc. Res., 2010, vol. 86, no. 2, pp. 254–264.PubMedCrossRefGoogle Scholar
  8. 8.
    Gonzalez-Navarro, H., Abu Nabah, Y.N., Vinue, A., et al., p19(ARF) deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis, J. Am. Coll. Cardiol., 2010, vol. 55, no. 20, pp. 2258–2268.PubMedCrossRefGoogle Scholar
  9. 9.
    Pokrovskii, A.V., Kovaneva, R.A., Zingerman, L.S., et al., Indications for surgical treatment of cerebrovascular insufficiency in patients with occlusive lesions in the brachiocephalic vessels, Nevropatol. Psikhiatr., 1977, no. 12, pp. 1789–1797.Google Scholar
  10. 10.
    Bibikova, M., Le, J., Barnes, B., et al., Genome-wide DNA methylation profiling using infinium assay, Epigenomics, 2009, vol. 1, no. 1, pp. 177–200.PubMedCrossRefGoogle Scholar
  11. 11.
    Furlong, R.A., Lyall, J.E., and Lush, M.J., Four dinucleotide repeat polymorphisms on chromosome 9 (D9S143-D9S146), Hum. Mol. Genet., 1992, vol. 1, no. 6, p. 447.PubMedCrossRefGoogle Scholar
  12. 12.
    Kamb, A., Shattuck-Eidens, D., Eeles, R., et al., Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus, Nat. Genet., 1994, vol. 8, no. 1, pp. 22–26.CrossRefGoogle Scholar
  13. 13.
    Zemlyakova, V.V., Strel’nikov, V.V., Zborovskaya, I.B., et al., Comparison of aberrant methylation of CpG islands in the p16/CDKN2A and p14/ARF promoters in non-small cell lung cancer and acute lymphoblastic leukemia, Mol. Biol. (Moscow), 2004, vol. 38, no. 6, pp. 821–827.CrossRefGoogle Scholar
  14. 14.
    Baur, A.S., Shaw, P., Burri, N., et al., Frequent methylation silencing of p15(INK4b) (MTS2) and p16(INK4a) (MTS1) in B-cell and T-cell lymphomas, Blood, 1999, vol. 94, no. 5, pp. 1773–1781.PubMedGoogle Scholar
  15. 15.
    Amatya, V.J., Takeshima, Y., and Inai, K., Methylation of p14(ARF) gene in meningiomas and its correlation to the p53 expression and mutation, Mod. Pathol., 2004, vol. 17, no. 6, pp. 705–710.PubMedCrossRefGoogle Scholar
  16. 16.
    Herman, J.G., Graff, J.R., Myohanen, S., et al., Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, no. 18, pp. 9821–9826.PubMedCrossRefGoogle Scholar
  17. 17.
    Holdt, L.M., Sass, K., and Gabel, G., Expression of Chr9p21 genes CDKN2B (p15(INK4b)), CDKN2A (p16(INK4a), p14(ARF)) and MTAP in Human Atherosclerotic Plaque, Atherosclerosis, 2011, vol. 214, no. 2, pp. 264–270.PubMedCrossRefGoogle Scholar
  18. 18.
    Nazarenko, M.S., Lebedev, I.N., and Puzyrev, V.P., Epigenetic genome modification and the cardiovascular diseases, in Genetika cheloveka i patologiya: Aktual’nye problemy sovremennoi tsitogenetiki (Human Genetics and Pathology: Current Problems of Modern Cytogenetics), Tomsk: Pechatnaya manufaktura, 2011, issue 9, pp. 64–71.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. S. Nazarenko
    • 1
    • 3
    Email author
  • A. V. Markov
    • 1
  • I. N. Lebedev
    • 1
    • 3
  • A. A. Sleptsov
    • 1
  • J. A. Koroleva
    • 1
  • A. V. Frolov
    • 2
  • O. L. Barbarash
    • 2
  • L. S. Barbarash
    • 2
  • V. P. Puzirev
    • 1
    • 3
  1. 1.Research Institute of Medical Genetics, Siberian BranchRussian Academy of Medical SciencesTomskRussia
  2. 2.Research Institute for Complex Issues of Cardiovascular Diseases, Siberian BranchRussian Academy of Medical SciencesKemerovoRussia
  3. 3.Siberian State Medical UniversityTomskRussia

Personalised recommendations