Skip to main content
Log in

Chromosome variability in grape (Vitis amurensis Rupr.) cells transformed with plant Oncogene rolB

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The numbers of chromosomes and nucleoli in cultured cells of Vitis amurensis transformed with the rolB oncogene from A. rhizogenes have been studied. In general, the integration of the rolB gene in grape DNA mostly caused the elevation of the level of the chromosome variability, as well as higher numbers of nucleoli in the cultured cells. The possible influence of the observed chromosomal modifications on the productivity parameters of the grape cell cultures is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Z.J., Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids, Ann. Rev. Plant Biol., 2007, vol. 58, pp. 377–406.

    Article  CAS  Google Scholar 

  2. Yang, X., Ye, C.Y., Cheng, Z.M., et al., Genomic aspects of research involving polyploid plants, Plant Cell Tiss. Organ Cult., 2011, vol. 104, pp. 387–397.

    Article  Google Scholar 

  3. Heslop-Harrison, J.S. and Schwarzacher, T., Organization of the plant genome in chromosomes, Plant J., 2011, vol. 66, pp. 18–33.

    Article  PubMed  CAS  Google Scholar 

  4. Illustrated Handbook of Succulent Plants: Crassulaceae, Hart, H., Bleij, B., and Eggli, U., Eds., Springer-Verlag: Berlin, 2003.

    Google Scholar 

  5. Jackson, R.C., Ngo, N., and Ngo, H., Chromosomespecific desynapsis in the N = 2 race of Haplopappus gracilis Compositae), Am. J. Bot., 2002, vol. 89, pp. 777–782.

    Article  PubMed  CAS  Google Scholar 

  6. Ramsey, J. and Schemske, D.W., Pathways, mechanisms, and rates of polyploid formation in flowering plants, Annu. Rev. Ecol. Syst., 1998, vol. 29, pp. 467–501.

    Article  Google Scholar 

  7. Otto, S.P. and Whitton, J., Polyploid incidence and evolution, Ann. Rev. Genet., 2000, vol. 34, pp. 401–437.

    Article  PubMed  CAS  Google Scholar 

  8. Levin, D.A., The Role of Chromosomal Change in Plant Evolution, Oxford: Oxford Univ. Press, 2002.

    Google Scholar 

  9. Otto, S.P., The evolutionary consequences of polyploidy, Cell, 2007, vol. 131, pp. 452–462.

    Article  PubMed  CAS  Google Scholar 

  10. El-Morsy, S.I., Dorra, M.D.M., El-Hady, E.A.A., et al., Comparative studies on diploid and tetraploid levels of Nicotiana alata, Acad. J. Plant Sci., 2009, vol. 2, pp. 182–188.

    Google Scholar 

  11. Grouh, M.S.H., Meftahizade, H., Lotfi, N., et al., Doubling the chromosome number of Salvia hains using colchicine: Evaluation of morphological traits of recovered plants, J. Med. Plants Res., 2011, vol. 5, pp. 4892–4898.

    CAS  Google Scholar 

  12. Wu, J.H., Ferguson, A.R., Murray, B.G., et al., Induced polyploidy dramatically increases the size and alters the shape of fruit in Actinidia chinensis, Ann. Bot., 2012, vol. 109, pp. 169–179.

    Article  PubMed  Google Scholar 

  13. Bulgakov, V.P., Lauve, L.S., Chernoded, G.K., et al., Chromosome variation in ginseng cells transformed with the rolC plant oncogene, Russ. J. Genet., 2000, vol. 36, no. 2, pp. 209–216.

    CAS  Google Scholar 

  14. Kiselev, K.V. and Tchernoded, G.K., Somatic embryogenesis in the Panax ginseng cell culture induced by the rolC oncogene is associated with increased expression of WUS and SERK Genes, Russ. J. Genet., 2009, vol. 45, pp. 445–452.

    Article  CAS  Google Scholar 

  15. Altamura, M.M., Agrobacterium rhizogenes rolB and rolD genes: regulation and involvement in plant development, Plant Cell Tiss. Organ Cult., 2004, vol. 77, pp. 89–101.

    Article  CAS  Google Scholar 

  16. Kiselev, K.V., Dubrovina, A.S., Veselova, M.V., et al., The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells, J. Biotechnol., 2007, vol. 128, pp. 681–692.

    Article  PubMed  CAS  Google Scholar 

  17. Kiselev, K.V. and Dubrovina, A.S., A new method for analyzing gene expression based on frequency analysis of RT-PCR products obtained with degenerate primers, Acta Physiol. Plant., 2010, vol. 32, pp. 495–502.

    Article  CAS  Google Scholar 

  18. Kiselev, K.V., Dubrovina, A.S., and Bulgakov, V.P., Phenylalanine ammonia-lyase and stilbene synthase gene expression in rolB transgenic cell cultures of Vitis amurensis, Appl. Microbiol. Biotechnol., 2009, vol. 82, pp. 647–655.

    Article  PubMed  CAS  Google Scholar 

  19. Dubrovina, A.S., Kiselev, K.V., Veselova, M.V., et al., Enhanced resveratrol accumulation in rolB transgenic cultures of Vitis amurensis correlates with unusual changes in CDPK gene expression, J. Plant Physiol., 2009, vol. 166, pp. 1194–1206.

    Article  PubMed  CAS  Google Scholar 

  20. Kiselev, K.V., Perspectives for production and application of resveratrol, Appl. Microbiol. Biotechnol., 2011, vol. 90, pp. 417–425.

    Article  PubMed  CAS  Google Scholar 

  21. Dubrovina, A.S. and Kiselev, K.V., Effect of long-term cultivation on resveratrol accumulation in a high-producing cell culture of Vitis amurensis, Acta Physiol. Plant., 2012, vol. 34, pp. 1101–1106.

    Article  CAS  Google Scholar 

  22. Kiselev, K.V., Tyunin, A.P., Manyakhin, A.Y., and Zhuravlev, Y.N., Resveratrol content and expression patterns of stilbene synthase genes in Vitis amurensis cells treated with 5-azacytidine, Plant Cell Tiss. Organ Cult., 2011, vol. 105, pp. 65–72.

    Article  CAS  Google Scholar 

  23. Tyunin, A.P., Kiselev, K.V., and Zhuravlev, Y.N., Effects of 5-azacytidine induced DNA demethylation on methyltransferase gene expression and resveratrol production in cell cultures of Vitis amurensis, Plant Cell Tiss. Organ Cult., 2012, vol. 111, pp. 91–100.

    Article  CAS  Google Scholar 

  24. Tyunin, A.P., Lauve, L.S., and Kiselev, K.V., The influence of 5-azacytidine on karyological indicators in cell cultures of Vitis amurensis, Vestn. Krasnodar. Gos. Agrar. Univ., 2012, vol. 10, pp. 48–54.

    Google Scholar 

  25. Muratova, E.N., Nucleolus staining techniques for karyological analysis of conifers, Bot. Zh., 1995, vol. 80, pp. 82–86.

    Google Scholar 

  26. Velasco, R., Zharkikh, A., Troggio, M., et al., A high quality draft consensus sequence of the genome of a heterozygous grapevine variety, PLoS One, 2007, vol. 2, p. e1326.

    Article  PubMed  Google Scholar 

  27. Lauve, L.S., Burundukova, O.L., Muzarok, T.I., and Zhuravlev, Yu.N., Chromosome numbers of Panax ginseng C.A. Mey, Bot. Zh., 2008, vol. 93, pp. 158–161.

    Google Scholar 

  28. Vasyutkina, E.A., Lauve, L.S., Reunova, G.D., and Zhuravlev, Yu.N., Chromosomal variegation of larch Larix olgensis A. Herry in Primorsky Krai, Izv. Akad. Nauk, Ser. Biol., 2010, vol. 6, pp. 670–675.

    Google Scholar 

  29. Estruch, J., Schell, J., and Spena, A., The protein encoded by the rolB plant oncogene hydrolyses indole glucosides, EMBO J., 1991, vol. 10, pp. 3125–3128.

    PubMed  CAS  Google Scholar 

  30. Nilsson, O., Crozier, A., Schmulling, T., et al., Indole-3-acetic acid homeostasis in transgenic tobacco plants expressing the Agrobacterium rhizogenes rolB gene, Plant J., 1993, vol. 3, pp. 681–689.

    Article  CAS  Google Scholar 

  31. Filippini, F., Rossi, V., Marin, O., et al., A plant oncogene as a phosphatase, Nature, 1996, vol. 379, pp. 499–500.

    Article  PubMed  CAS  Google Scholar 

  32. Moriuchi, H., Okamoto, C., Nishihama, R., et al., Nuclear localization and interaction of RolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogene rolB, Plant J., 2004, vol. 38, pp. 260–275.

    Article  PubMed  CAS  Google Scholar 

  33. Kiselev, K.V., Shumakova, O.A., Manyakhin, A.Y., and Mazeika, A.N., Influence of calcium influx induced by the calcium ionophore, A23187, on resveratrol content and the expression of CDPK and STS genes in the cell cultures of Vitis amurensis, Plant Growth Regul., 2012, vol. 68, pp. 371–381.

    Article  CAS  Google Scholar 

  34. Lavania, U.C., Srivastava, S., Lavania, S., et al., Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation, Plant J., 2012. doi:10.1111/j.1365-313X.2012.05006.x

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Kiselev.

Additional information

Original Russian Text © K.V. Kiselev, L.S. Lauve, A.P. Tyunin, 2013, published in Genetika, 2013, Vol. 49, No. 6, pp. 712–717.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, K.V., Lauve, L.S. & Tyunin, A.P. Chromosome variability in grape (Vitis amurensis Rupr.) cells transformed with plant Oncogene rolB . Russ J Genet 49, 617–622 (2013). https://doi.org/10.1134/S1022795413060057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795413060057

Keywords

Navigation