Skip to main content
Log in

Phylogenetic analysis of the genes for naphthalene and phenanthrene degradation in Burkholderia sp. strains

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The genetic systems responsible for naphthalene and phenanthrene catabolism have been analyzed in the five strains of Burkholderia sp. isolated from soil samples (West Siberia) contaminated by heavy residual fuel and in the laboratory collection strain Burkholderia sp. BS3702 isolated from soil samples of the coke gas plant (Vidnoe, Moscow oblast). The results of this work demonstrate that naphthalene and phenanthrene degradation in the above strains is encoded by the sequences not homologous to the classical nah genes of pseudomonades. In the Burkholderia sp. BS3702 strain, the initial stages of phenanthrene degradation and the subsequent stages of salicylate degradation are controlled by the sequences of different evolutionary descent (phn and nag genes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Habe, H. and Omori, T., Genetics of polycyclic aromatic hydrocarbons metabolism in diverse aerobic strains, Biosci. Biotechnol. Biochem., 2003, vol. 67, pp. 225–243.

    Article  PubMed  CAS  Google Scholar 

  2. Zhou, N.Y., Fuenmayor, S.L., and Williams, P.A., nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism, J. Bacteriol., 2001, vol. 183, pp. 700–708.

    Article  PubMed  CAS  Google Scholar 

  3. Jeon, C.O., Park, M., Ro, H.S., et al., The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene clusters and novel regulatory control, Appl. Environ. Microbiol., 2006, vol. 72, pp. 1086–1095.

    Article  PubMed  CAS  Google Scholar 

  4. Mueller, J.G., Devereux, R., Santavy, D.L., et al., Phylogenetic and physiological comparisons of PAH-degrading bacteria from geographically diverse soils, Antonie van Leeuwenhoek, 1997, vol. 71, pp. 329–343.

    Article  PubMed  CAS  Google Scholar 

  5. Laurie, A.D. and Lloyd-Jones, G., The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism, J. Bacteriol., 1999, vol. 181, pp. 531–540.

    PubMed  CAS  Google Scholar 

  6. Laurie, A.D. and Lloyd-Jones, G., Conserved and hybrid meta-cleavage operons from PAH-degrading Burkholderia RP007, Biochem. Biophys. Res. Commun., 1999, vol. 262, pp. 308–314.

    Article  PubMed  CAS  Google Scholar 

  7. Izmalkova, T.Yu., Diversity of genetic systems of naphthalene catabolism in fluorescent pseudomonad strains, Cand. Sci. (Biol.) Dissertation, Pushchino: Skryabin Inst. Biochem. Physiol. Microorganisms, 2004, p. 129.

    Google Scholar 

  8. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982.

    Google Scholar 

  9. Evans, C.G.T., Herbert, D., and Tempest, D.B., The continuous cultivation of microorganisms: 2. Construction of a chemostat, Methods Microbiol., 1970, vol. 2, pp. 277–327.

    Article  CAS  Google Scholar 

  10. Ausubel, F.M., Brent, R., Kingston, R.E., et al., Shot Protocols in Molecular Biology, Wiley, 4th ed.

  11. Dombek, P.E., Johnson, L.K., Zimmerley, S.T., and Sadowsky, M.J., Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources, Appl. Environ. Microbiol., 2000, vol. 66, pp. 2572–2577.

    Article  PubMed  CAS  Google Scholar 

  12. Weisburg, W.G., Barnes, S.M., Pelletier, D.A., and Lane, D.J., 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 1991, vol. 73, pp. 697–703.

    Google Scholar 

  13. Ferrero, M., Llobet-Brossa, E., Lalucat, J., et al., Coexistence of two distinct copies of naphthalene degradation genes in Pseudomonas strains isolated from the Western Mediterranean region, Appl. Environ. Microbiol., 2002, vol. 68, pp. 957–962.

    Article  PubMed  CAS  Google Scholar 

  14. Izmalkova, T.Yu., Mavrodi, D.V., Sokolov, S.L., et al., Molecular classification of IncP-9 naphthalene degradation plasmids, Plasmid, 2006, vol. 56, pp. 1–10.

    Article  PubMed  CAS  Google Scholar 

  15. Wikstrom, P., Wiklund, A., Andersson, A.C., and Forsman, M., DNA recovery and PCR quantification of catechol-2,3-dioxygenase genes from different soil types, J. Biotechnol., 1996, vol. 52, pp. 107–120.

    Article  PubMed  CAS  Google Scholar 

  16. Izmalkova, T.Yu., Sazonova, O.I., Sokolov, S.L., et al., The P-7 incompatibility group plasmids responsible for biodegradation of naphthalene and salicylate in fluorescent pseudomonads, Mikrobiologiya, 2005, vol. 74, no. 3, pp. 342–348.

    Google Scholar 

  17. Laurie, A.D. and Lloyd-Jones, G., Quanification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR, Appl. Environ. Microbiol., 2000, vol. 66, pp. 1814–1817.

    Article  PubMed  CAS  Google Scholar 

  18. Balashova, N.V., Kosheleva, I.A., Golovchenko, N.P., and Boronin, A.M., Phenanthrene metabolism by Pseudomonas and Burkholderia strains, Proc. Biochem., 1999, vol. 35, pp. 291–296.

    Article  CAS  Google Scholar 

  19. Balashova, N.V., Phenanthrene and naphthalene degradation by Pseudomonas and Burkholderia bacteria, Cand. Sci. (Biol.) Dissertation, Pushchino: Skryabin Inst. Biochem. Physiol. Microorganisms, 2000, p. 117.

    Google Scholar 

  20. Van de Peer, Y. and De Wachter, R., TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment, Comput. Appl. Biosci., 1994, vol. 10, pp. 569–570.

    PubMed  Google Scholar 

  21. Wilson, M.S., Herrick, J.B., Jeon, C.O., et al., Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene-degrading guilds from adjacent soil environments, Appl. Environ. Microbiol., 2003, vol. 69, pp. 2172–2181.

    Article  PubMed  CAS  Google Scholar 

  22. Seo, J.S., Keum, Y.S., Hu, Y., et al., Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol, Biodegradation, 2007, vol. 18, pp. 123–131.

    Article  PubMed  CAS  Google Scholar 

  23. Tittabutr, P., Cho, I.K., and Li, Q.X., Phn and Nag-like deoxygenizes metabolize polycyclic aromatic hydrocarbons in Burkholderia sp. C3, Biodegradation, 2011, vol. 22, pp. 1119–1133.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Izmalkova.

Additional information

Original Russian Text © T.Yu. Izmalkova, O.I. Sazonova, I.A. Kosheleva, A.M. Boronin, 2013, published in Genetika, 2013, Vol. 49, No. 6, pp. 703–711.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izmalkova, T.Y., Sazonova, O.I., Kosheleva, I.A. et al. Phylogenetic analysis of the genes for naphthalene and phenanthrene degradation in Burkholderia sp. strains. Russ J Genet 49, 609–616 (2013). https://doi.org/10.1134/S1022795413060033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795413060033

Keywords

Navigation