Skip to main content
Log in

Involvement of cyclin-dependent kinase CDK1/CDC28 in regulation of cell cycle

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Cyclin-dependent kinases (CDKs) are a family of enzymes essential for the progression of the cells through the cell cycle in eukaryotes. Moreover, genetic stability-maintaining processes, such as check-point control and DNA repair, require the phosphorylation of a wide variety of target substrates by CDK. In budding yeast Saccharomyces cerevisiae, the key role in the cell cycle progression is played by CDK1/CDC28 kinase. This enzyme is the most thoroughly investigated. In this review the involvement of CDC28 kinase in regulation of the cell cycle is discussed in the light of newly obtained data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mendenhall, M. and Hodge, A., Regulation of Cdc28 Cyclin-Dependent Protein Kinase Activity during the Cell Cycle of the Yeast, Microbiol. Mol. Biol. Rev., 1998, vol. 62, pp. 1191–1243.

    PubMed  CAS  Google Scholar 

  2. Viallard, J.F., Lacombe, F., Belloc, F., et al., Molecular Mechanisms Controlling the Cell Cycle: Main Considerations and Implications in Oncology, Cancer Radiother., 2001, vol. 5, pp. 109–129.

    Article  PubMed  CAS  Google Scholar 

  3. Enserink, J.M. and Kolodner, R.D., An Overview of Cdk1-Controlled Targets and Processes, Cell Div., 2010, vol. 5, pp. 11–52.

    Article  PubMed  CAS  Google Scholar 

  4. Bloom, J. and Cross, R.F., Multiple Levels of Cyclin Specificity in Cell-Cycle Control, Nat. Rev. Mol. Cell Biol., 2007, vol. 8, pp. 149–160.

    Article  PubMed  CAS  Google Scholar 

  5. Bartova, I., Otyepla, M., Kriz, Z., and Koca, J., Activation and Inhibition of Cyclin-Dependent Kinase-2 by Phosphorylation: A Molecular Dynamics Study Reveals the Functional Importance of the Glycine-Rich Loop, Protein Sci., 2006, vol. 13, pp. 1449–1457.

    Article  Google Scholar 

  6. Kholmurodov, Kh.T., Kretov, D.A., Gerasimova, A.S., and Koltovaya, N.A., Molecular Dynamics Simulation of the Substitution of Serine for the Conserved Glycine in the G-Loop in the cdc28-srm Yeast Mutant Using the Crystal Lattice of Human CDK2 Kinase, Biofizika (Moscow), 2006, vol. 51, no. 4, pp. 603–614.

    Google Scholar 

  7. Kretov, D., Kholmurodov, Kh., and Koltovaya, N., An Analysis of ATP Binding with Kinase Catalytic Subunit by Molecular Dynamics Simulation of the CDK2 Active Kinase Crystal Lattice, Russ. J. Phys. Chem. A, 2007, vol. 81, no. 10, pp. 1692–1697.

    Article  CAS  Google Scholar 

  8. Kholmurodov, Kh.T. and Koltovaya, N.A., Simulation of Kinase CDK2-Cyclin A by the Molecular Dynamics Method: The Effect of Gly16->Ser16 and Arg284->Gln274 Substitutions on the Conformational Structure of Kinase Subunit, Biofizika (Moscow), 2009, vol. 54, no. 6, pp. 999–1004.

    CAS  Google Scholar 

  9. Malumbers, M. and Barbacid, M., Cell Cycle, CDKs and Cancer: A Changing Paradigm, Nat. Rev. Cancer, 2009, vol. 9, pp. 153–166.

    Article  CAS  Google Scholar 

  10. Ubersax, J.A., Woodbury, E.L., Quanh, P.N., et al., Targets of the Cyclin-Dependent Kinase Cdk1, Nature, 2003, vol. 425, pp. 859–864.

    Article  PubMed  CAS  Google Scholar 

  11. Holt, L.J., Tuch, B.B., Villen, J., et al., Global Analysis of Cdk1 Substrate Phosphorylation Sites Provides Insights into Evolution, Science, 2009, vol. 325, pp. 1682–1686.

    Article  PubMed  CAS  Google Scholar 

  12. Kõivomägi, M., Valk, E., Venta, R., et al., Dynamics of Cdk1 Substrate Specificity during the Cell Cycle, Mol. Cell, 2011, vol. 42, nos. 4–5, pp. 610–623.

    Article  PubMed  CAS  Google Scholar 

  13. Devin, A.B., Prosvirova, T.Yu., Peshekhonov, V.T., et al., The Start Gene CDC28 and the Genetic Stability of Yeast, Yeast, 1990, vol. 6, pp. 231–243.

    Article  PubMed  CAS  Google Scholar 

  14. Verges, E., Colomina, N., Gari, E., et al., Cyclin Cln3 Is Retained at the ER and Release by the J Chaperone Ydj1 in Late G1 to Trigger Cell Cycle Entry, Mol. Cell, 2007, vol. 26, pp. 649–662.

    Article  PubMed  CAS  Google Scholar 

  15. Diehl, J.A., Yang, W., Rimerman, R.A., et al., Hsc70 Regulates Accumulation of Cyclin D1 and Cyclin D1-Dependent Protein Kinase, Mol. Cell. Biol., 2003, vol. 23, pp. 1764–1774.

    Article  PubMed  CAS  Google Scholar 

  16. Traven, A., Huang, D.C., and Lithgow, T., Protein Hijacking: Key Proteins Held Captive against Their Will, Cancer Cell, 2004, vol. 5, pp. 107–108.

    Article  PubMed  CAS  Google Scholar 

  17. Wagner, M.V., Smolka, M.B., de Bruin, R.A.M., et al., Whi5 Regulation by Site Specific CDK-Phosphorylation in Saccharomyces cerevisiae, PLoS ONE, 2009, vol. 4, no. 1, e4300.

    Article  PubMed  CAS  Google Scholar 

  18. Gemonat, M., Spanos, A., Wells, G.P., et al., Clb6/Cdc28 and Cdc14 Regulate Phosphorylation Status and Cellular Localization of Swi6, Mol. Cell Biol., 2004, vol. 24, pp. 2277–2285.

    Article  CAS  Google Scholar 

  19. Jackson, L.P., Reed, S.I., and Haase, S.B., Distinct Mechanisms Control the Stability of the Related S-Phase Cyclins Clb5 and Clb6, Mol. Cell Biol., 2006, vol. 26, pp. 2456–2466.

    Article  PubMed  CAS  Google Scholar 

  20. Schwob, E., Bohm, T., Mendenhall, M.D., and Nasmyth, K., The B-Type Cyclin Kinase Inhibitor p40SIC1 Controls the G1 to S Transition in S. cerervisiae, Cell, 1994, vol. 79, pp. 233–244.

    Article  PubMed  CAS  Google Scholar 

  21. Dahmann, C., Diffley, J.F., and Nasmyth, K.A., S- Phase-Promoting Cyclin-Dependent Kinases Prevent Re-Replication by Inhibiting the Transition of Replication Origins to a Pre-Replicative State, Curr. Biol., 1995, vol. 5, pp. 1257–1269.

    Article  PubMed  CAS  Google Scholar 

  22. Donaldson, A.D., Raghuraman, M.K., Friedman, K.L., et al., CLB5-Dependent Activation of Late Replication Origins in S. cerervisiae, Mol. Cell, 1998, vol. 2, pp. 173–182.

    Article  PubMed  CAS  Google Scholar 

  23. Weinreich, M. and Stillman, B., Cdc7p-Dbf4p Kinase Binds to Chromatin during S Phase and Is Regulated by Both the APC and the RAD53 Checkpoint Pathway, EMBO J., 1999, vol. 18, pp. 5334–5346.

    Article  PubMed  CAS  Google Scholar 

  24. Randell, J.C., Bower, J.L., Rodriguez, H.K., et al., Sequential ATP Hydrolysis by Cdc6 and ORC Directs Loading of the Mcm2-7 Helicase, Mol. Cell, 2006, vol. 21, pp. 29–39.

    Article  PubMed  CAS  Google Scholar 

  25. Cvetic, C.A. and Walter, J.C., Getting a Grip on Licensing: Mechanism of Stable Mcm2-7 Loading onto Replication Origins, Mol. Cell, 2006, vol. 21, pp. 143–144.

    Article  PubMed  CAS  Google Scholar 

  26. Zou, L. and Stillman, B., Formation of a Preinitiation Complex by S-Phase Cyclin CDK-Dependent Loading of Cdc45p onto Chromatin, Science, 1998, vol. 280, pp. 593–596.

    Article  PubMed  CAS  Google Scholar 

  27. Zou, L. and Stillman, B., Assembly of a Complex Containing Cdc45p, Replication Protein A, and Mcm2p at Replication Origins Controlled by S-Phase Cyclin-Dependent Kinases and Cdc7p-Dbf4p Kinase, Mol. Cell, 2000, vol. 20, pp. 3086–3096.

    Article  CAS  Google Scholar 

  28. Kanemaki, M. and Labib, K., Distinct Role for Sld3 and GINS During Establishment and Progression of Eukaryotic DNA Replication Forks, EMBO J., 2006, vol. 25, pp. 1753–1763.

    Article  PubMed  CAS  Google Scholar 

  29. Labib, K., How Do Cdc7 and Cyclin-Dependent Kinases Trigger the Initiation of Chromosome Replication in Eukaryotic Cells?, Genes Dev., 2010, vol. 24, pp. 1208–1219.

    Article  PubMed  CAS  Google Scholar 

  30. Tak, Y.S., Tanaka, Y., Endo, S., et al., CDK-Catalyzed Regulatory Phosphorylation for Formation of the DNA Replication Complex Sld2-Dpb11, EMBO J., 2006, vol. 25, pp. 1987–1996.

    Article  PubMed  CAS  Google Scholar 

  31. Zegerman, P. and Diffley, J.F., Checkpoint-Dependent Inhibition of DNA Replication Initiation by Sld3 and Dbf4 Phosphorylation, Nature, 2010, vol. 467, pp. 474–478.

    Article  PubMed  CAS  Google Scholar 

  32. Nguen, V., Co, C., and Li, J.J., Cyclin-Dependent Kinases Prevent DNA Re-Replication through Multiple Mechanisms, Nature, 2001, vol. 411, pp. 1068–1073.

    Article  CAS  Google Scholar 

  33. Liku, M.E., Nguyen, V.Q., Rosales, A.W., et al., CDK Phosphorylation of a Novel NLS-NES Module Distributed between Two Subunits of the Mcm2-7 Complex Prevents Chromosomal Replication, Mol. Biol. Cell, 2005, vol. 16, pp. 5026–5039.

    Article  PubMed  CAS  Google Scholar 

  34. Chen, S. and Bell, S.P., CDK Prevents Mcm2-7 Helicase Loading by Inhibiting Cdt1 Interaction with Orc6, Genes Dev., 2011, vol. 25, pp. 363–372.

    Article  PubMed  CAS  Google Scholar 

  35. Gao, H., Cervantes, R.B., Mandell, E.K., et al., RPA-Like Proteins Mediate Yeast Telomere Function, Nat. Struct. Mol. Biol., 2007, vol. 14, pp. 208–214.

    Article  PubMed  CAS  Google Scholar 

  36. Diede, S.J. and Gottschling, D.E., Telomerase-Mediated Telomere Addition in vivo Requires DNA Primase and DNA Polymerase Alpha and Delta, Cell, 1999, vol. 99, pp. 723–733.

    Article  PubMed  CAS  Google Scholar 

  37. Marcand, S., Brevet, V., Mann, C., et al., Cell Cycle Restriction of Telomere Elongation, Curr. Biol., 2000, vol. 10, pp. 487–490.

    Article  PubMed  CAS  Google Scholar 

  38. Taggart, A.K., Teng, S.C., and Zakian, V.A., Est1 as a Cell Cycle-Regulated Activator of Telomere-Bound Telomerase, Science, 2002, vol. 297, pp. 1023–1026.

    Article  PubMed  CAS  Google Scholar 

  39. Li, S., Makovets, S., Matsuguchi, T., et al., Cdk1-Dependent Phosphorylation of Cdc13 Coordinates Telomere Elongation during Cell-Cycle Progression, Cell, 2009, vol. 136, pp. 50–61.

    Article  PubMed  CAS  Google Scholar 

  40. Linger, J., Cooper, J.P., and Cech, T.R., Telomerase and DNA End Replication: No Longer a Lagging Strand Problem?, Science, 1995, vol. 269, pp. 1533–1534.

    Article  Google Scholar 

  41. Chakhparonian, M. and Wellinger, R.J., Telomere Maintenance and DNA Replication: How Closely Are These Two Connected?, Trends Genet., 2003, vol. 19, pp. 439–446.

    Article  PubMed  CAS  Google Scholar 

  42. Wellinger, R.J., Ethier, K., Labrecque, P., et al., Evidence for a New Step in Telomere Maintenance, Cell, 1996, vol. 85, pp. 423–433.

    Article  PubMed  CAS  Google Scholar 

  43. Vodenicharov, M.D. and Weillinger, R.J., DNA Degradation at Unprotected Telomeres in Yeast Is Regulated by the CDK1 (Cdc28/Clb) Cell-Cycle Kinase, Mol. Cell, 2006, vol. 24, pp. 127–137.

    Article  PubMed  CAS  Google Scholar 

  44. Tseng, S.F., Lin, J.J., and Teng, S.C., The Telomerase-Recruitment Domain of the Telomere Binding Protein Cdc13 Is Regulated by Mec1/Tel1-Dependent Phosphorylation, Nucleic Acids Res., 2006, vol. 34, pp. 6327–6336.

    Article  PubMed  CAS  Google Scholar 

  45. Paranteau, J. and Wellinger, R.J., Differential Processing of Leading- and Lagging-Strand Ends at Saccharomyces cerevisiae Telomeres Revealed by the Absence of Rad27p Nuclease, Genetics, 2002, vol. 162, pp. 1583–1594.

    Google Scholar 

  46. Teixeira, M. and Gilson, E., When CDK1 Rides the Telomere Cycle, Mol. Cell, 2006, vol. 24, pp. 491–492.

    Article  PubMed  CAS  Google Scholar 

  47. Takata, H., Tanaka, Y., and Matsuura, A., A Late S Phase-Specific Recruitment of Mre11 Complex Triggers Hierarchical Assembly of Telomere Replication Proteins in Saccharomyces cerevisiae, Mol. Cell, 2005, vol. 17, pp. 573–583.

    Article  PubMed  CAS  Google Scholar 

  48. Goudsouzian, L.K., Tuzon, C.T., and Zakian, V.A., Tel1p and Mre11p Are Required for Normal Levels of Est1p and Est2p Telomere Association, Mol. Cell, 2006, vol. 24, pp. 603–610.

    Article  PubMed  CAS  Google Scholar 

  49. Ira, G., Pellicioli, A., Balijja, A., et al., DNA End Resection, Homologous Recombination and DNA Damage Checkpoint Activation Require CDK1, Nature, 2004, vol. 431, pp. 1011–1017.

    Article  PubMed  CAS  Google Scholar 

  50. Frank, C.J., Hyde, M., and Greider, C.W., Regulation of Telomere Elongation by the Cyclin-Dependent Kinase CDK1, Mol. Cell, 2006, vol. 24, pp. 423–432.

    Article  PubMed  CAS  Google Scholar 

  51. Lydall, D., Hiding at the Ends of Yeast Chromosomes: Telomeres, Nucleases and Checkpoint Pathways, J. Cell Sci., 2003, vol. 116, pp. 4057–4065.

    Article  PubMed  CAS  Google Scholar 

  52. Lewis, L.K., Karthikeyan, G., Westmoreland, J.W., and Resnick, M.A., Differential Suppression of DNA Repair Deficiencies of Yeast rad50, mre11 and xrs2 Mutants by EXO1 and TLC1 (the RNA Component of Telomerase), Genetics, 2002, vol. 160, pp. 49–62.

    PubMed  CAS  Google Scholar 

  53. Moreau, S., Ferguson, J.R., and Symington, L.S., The Nuclease Activity of Mre11 Is Required for Meiosis but not for Mating Type Switching, End Joining, or Telomere Maintenance, Mol. Cell Biol., 1999, vol. 19, pp. 556–566.

    PubMed  CAS  Google Scholar 

  54. Nakada, D., Hirano, Y., and Sugimoto, R., Requirement of the Mre11 Complex and Exonuclease I for Activation of the Mec1 Signaling Pathway, Mol. Cell Biol., 2004, vol. 24, pp. 10016–10025.

    Article  PubMed  CAS  Google Scholar 

  55. McCune, H.J., Danielson, L.S., Alvino, G.M., et al., The Temporal Program of Chromosome Replication: Genomewide Replication in Clb5δ S. cerevisiae, Genetics, 2008, vol. 180, pp. 1833–1847.

    Article  PubMed  CAS  Google Scholar 

  56. Cimbora, D.M. and Groundine, M., The Control of Mammalian DNA Replication: A Brief History of Space and Timing, Cell, 2001, vol. 104, pp. 643–646.

    PubMed  CAS  Google Scholar 

  57. Heun, P., Laroche, T., Raghuraman, M.K., et al., The Positioning and Dynamics of Origin of Replication in the Budding Yeast Nucleus, J. Cell Biol., 2001, vol. 152, pp. 385–400.

    Article  PubMed  CAS  Google Scholar 

  58. Cockell, M. and Gasser, S.M., Nuclear Compartments and Gene Regulation, Curr. Opin. Genet., 1999, vol. 9, pp. 199–205.

    Article  CAS  Google Scholar 

  59. Therizols, P., Fairhead, C., Cabal, G.G., et al., Telomere Tethering at the Nuclear Periphery Is Essential for Efficient DNA Double Strand Break Repair in Subtelomeric Region, J. Cell Biol., 2006, vol. 172, pp. 189–199.

    Article  PubMed  CAS  Google Scholar 

  60. Hedinger, F., Neumann, F.R., van Houwe, G., et al., Live Imaging of Telomeres: yKu and Sir Proteins Define Redundant Telomere-Anchoring Pathways in Yeast, Curr. Biol., 2002, vol. 12, pp. 2076–2089.

    Article  Google Scholar 

  61. Taddei, A., Hedinger, F., Neumann, R.F., et al., Separation of Silencing from Perinuclear Anchoring Functions in Yeast Ku80, Sir4 and Esc1 Proteins, EMBO J., 2004, vol. 23, pp. 1301–1312.

    Article  PubMed  CAS  Google Scholar 

  62. Hiraga, S., Robertson, E.D., and Donaldson, A.D., The Ctf18 RFC-Like Complex Positions Yeast Telomeres but Does not Specify Their Replication Time, EMBO J., 2006, vol. 25, pp. 1505–1514.

    Article  PubMed  CAS  Google Scholar 

  63. Bupp, J.M., Martin, A.E., Stensrud, E.S., et al., Telomere Anchoring at the Nuclear Periphery Requires the Budding Yeast Sad1-UNC-84 Domain Protein Mps3, J. Cell Biol., 2007, vol. 179, pp. 845–854.

    Article  PubMed  CAS  Google Scholar 

  64. Hedinger, F., Berthiau, A.S., van Houwe, G., et al., Subtelomeric Factors Antagonize Telomere Anchoring and Tel-Independent Telomere Length Regulation, EMBO J., 2006, vol. 25, pp. 857–867.

    Article  CAS  Google Scholar 

  65. Ebrahimi, H. and Donalds, A.D., Release of Yeast Telomeres from the Nuclear Periphery Is Triggered by Replication and Maintained by Suppression of Ku-Mediated Anchoring, Genes Dev., 2008, vol. 22, pp. 3363–3374.

    Article  PubMed  CAS  Google Scholar 

  66. Ebrahimi, H., Robertson, E.D., Taddei, A., et al., Early Initiation of a Replication Origin Tethered at the Nuclear Periphery, J. Cell Sci., 2010, vol. 123, pp. 1015–1019.

    Article  PubMed  CAS  Google Scholar 

  67. Bianchi, A. and Shore, D., Early Replication of Short Telomeres in Budding Yeast, Cell, 2007, vol. 128, pp. 1051–1062.

    Article  PubMed  CAS  Google Scholar 

  68. Lian, H.Y., Robertson, E.D., Hiraga, S., et al., The Effect of Ku on Telomere Replication Time Is Mediated by Telomere Length but Is Independent of Histone Tail Acetylation, Moll. Biol. Cell, 2011, vol. 22, pp. 1753–1765.

    Article  CAS  Google Scholar 

  69. Vogelauer, M., Rubbi, L., Lucas, I., et al., Histone Acetylation Regulates the Time of Replication Origin Firing, Mol. Cell, 2002, vol. 10, pp. 1223–1233.

    Article  PubMed  CAS  Google Scholar 

  70. Aparicio, J.G., Viggiani, C.J., Gibson, D.G., and Aparicio, O.M., The Rpd3-Sin3 Histone Deacetylase Regulates Replication Timing and Enables Intra-S Origin Control in Saccharomyces cerevisiae, Mol. Cell Biol., 2004, vol. 24, pp. 4769–4780.

    Article  PubMed  CAS  Google Scholar 

  71. Knott, S.R., Viggiani, C.J., Tavare, S., and Aparicio, O.M., Genome-Wide Replication Profiles Indicate an Expansive Role for Rpd3L in Regulating Replication Initiation Timing or Efficiency, and Reveal Genomic Loci of Rpd3 Function in S. cerevisiae, Genes Dev., 2009, vol. 23, pp. 1077–1090.

    Article  PubMed  CAS  Google Scholar 

  72. Rudner, A.D., Hardwick, K.G., and Murray, A.W., Cdc28 Activates Exit from Mitosis in Budding Yeast, J. Cell Biol., 2000, vol. 149, pp. 1361–1376.

    Article  PubMed  CAS  Google Scholar 

  73. Rudner, A.D. and Murray, A.W., Phosphorylation by Cdc28 Activates the Cdc20-Dependent Activity of the Anaphase-Promoting Complex, J. Cell Biol., 2000, vol. 149, pp. 1377–1390.

    Article  PubMed  CAS  Google Scholar 

  74. Kraft, C., Herzog, F., Gieffers, C., et al., Mitotic Regulation of the Human Anaphase-Promoting Complex by Phosphorylation, EMBO J., 2003, vol. 22, pp. 6598–6609.

    Article  PubMed  CAS  Google Scholar 

  75. Agarwal, R. and Cohen-Fix, O., Phosphorylation of the Mitotic Regulator Pds1/Securing by Cdc28 Is Required for Efficient Nuclear Localization of Esp1/Separase, Genes Dev., 2002, vol. 16, pp. 1371–1382.

    Article  PubMed  CAS  Google Scholar 

  76. Holt, L.J., Krutchinsky, A.N., and Morgan, D.O., Positive Feedback Sharpens the Anaphase Switch, Nature, 2008, vol. 454, pp. 353–357.

    Article  PubMed  CAS  Google Scholar 

  77. Elsasser, S., Lou, F., Wang, B., et al., Interaction between Yeast Cdc6 Protein and B-Type Cyclin/Cdc28 Kinases, Mol. Biol. Cell, 1996, vol. 7, pp. 1723–1735.

    PubMed  CAS  Google Scholar 

  78. Boronat, S. and Campbell, J.L., Mitotic Cdc6 Stabilizes Anaphase-Promoting Complex Substrates by a Partially Cdc28-Independent Mechanism, and This Stabilization Is Suppressed by Deletion of Cdc55, Mol. Cell. Biol., 2007, vol. 27, pp. 1158–1171.

    Article  PubMed  CAS  Google Scholar 

  79. Mui, M.Z., Roopchand, D.E., Gentry, M.S., et al., Adenovirus Protein E4orf4 Induces Premature APCCdc20 Activation in Saccharomyces cerevisiae by a Protein Phosphatase 2A-Dependent Mechanism, J. Virol., 2010, vol. 84, pp. 4798–4809.

    Article  PubMed  CAS  Google Scholar 

  80. Yang, H., Jiang, W., Gentry, M., and Hallberg, R.L., Loss of a Protein Phosphatase 2A Regulatory Subunit (Cdc55p) Elicits Improper Regulation of Swe1p Degradation, Mol. Cell Biol., 2000, vol. 20, pp. 8143–8156.

    Article  PubMed  CAS  Google Scholar 

  81. Glotzer, M., Murray, A.W., and Kirschner, M.W., Cyclin Is Degraded by the Ubiquitin Pathway, Nature, 1991, vol. 349, pp. 132–138.

    Article  PubMed  CAS  Google Scholar 

  82. Shirayama, M., Toth, A., Galova, M., et al., APCCdc20 Promotes Exit from Mitosis by Destroying the Anaphase Inhibitor Pds1 and Cyclin Clb5, Nature, 1999, vol. 402, pp. 203–207.

    Article  PubMed  CAS  Google Scholar 

  83. Yeong, F.M., Lim, H.H., Padmashree, C.G., and Surana, U., Exit from Mitosis in Budding Yeast: Biphasic Inactivation of the Cdc28-Clb2 Mitotic Kinases and the Role of Cdc20, Mol. Cell, 2000, vol. 5, pp. 501–511.

    Article  PubMed  CAS  Google Scholar 

  84. Jaspersen, S.L., Charles, J.F., and Morgan, D.O., Inhibitory Phosphorylation of the APC Regulator Hct1 Is Controlled by the Kinases Cdc28 and the Phosphatase Cdc14, Curr. Biol., 1999, vol. 9, pp. 227–236.

    Article  PubMed  CAS  Google Scholar 

  85. Zachariae, W., Schwab, M., Nasmyth, K., et al., Control of Cyclin Ubiquitination by CDK-Regulated Binding of Hct1 to the Anaphase Promoting Complex, Science, 1998, vol. 282, pp. 1721–1724.

    Article  PubMed  CAS  Google Scholar 

  86. Prinz, S., Hwang, E.S., Visintin, R., et al., The Regulation of Cdc20 Proteolysis Reveals a Role for APC Components Cdc23 and Cdc27 during S Phase and Early Mitosis, Curr. Biol., 1998, vol. 8, pp. 750–760.

    Article  PubMed  CAS  Google Scholar 

  87. D’Amour, D. and Amon, A., At the Interface between Signaling and Executing Anaphase-Cdc14 and the FEAR Network, Genes Dev., 2004, vol. 18, pp. 2581–2595.

    Article  CAS  Google Scholar 

  88. Calzada, A., Sacristan, M., Sanchez, E., and Buenno, A., Cdc6 Cooperates with Sic1 and Hct1 to Inactivate Mitotic Cyclin-Dependent Kinases, Nature, 2001, vol. 412, pp. 355–358.

    Article  PubMed  CAS  Google Scholar 

  89. Lanker, S., Valdivieso, M.H., and Wittenberg, C., Rapid Degradation of the G1 Cyclin Cln2 Induced by CDK-Dependent Phosphorylation, Science, 1996, vol. 271, pp. 1597–1601.

    Article  PubMed  CAS  Google Scholar 

  90. Margottin-Goguet, F., Hsu, J.Y., Loktev, A., et al., Prophase Destruction of Emi1 by the SCF (beta TrCP/Slimb) Ubiquitin Ligase Activates the Anaphase Promoting Complex to Allow Progression beyond Prometaphase, Dev. Cell, 2003, vol. 4, pp. 813–826.

    Article  PubMed  CAS  Google Scholar 

  91. Cuvier, O., Stanojcic, S., Lemaitre, J.M., et al., A Topoisomerase II-Dependent Mechanism for Resetting Replications at the S-M-Phase Transition, Genes Dev., 2008, vol. 22, pp. 860–865.

    Article  PubMed  CAS  Google Scholar 

  92. Tseng, S.F., Shen, Z.J., Tsai, H.J., et al., Rapid Cdc13 Turnover and Telomere Length Homeostasis Are Controlled by Cdk1-Mediated Phosphorylation of Cdc13, Nucleic Acids Res., 2009, vol. 37, pp. 3602–3611.

    Article  PubMed  CAS  Google Scholar 

  93. Chant, J. and Pringle, J.R., Patterns of Bud-Site Selection in the Yeast Saccharomyces cerevisiae, J. Cell Biol., 1995, vol. 129, pp. 751–765.

    Article  PubMed  CAS  Google Scholar 

  94. Lew, D.J. and Reed, S.I., Morphogenesis in the Yeast Cell Cycle: Regulation by Cdc28 and Cyclins, J. Cell Biol., 1993, vol. 120, pp. 1305–1320.

    Article  PubMed  CAS  Google Scholar 

  95. Nern, A. and Arkowitz, R.A., Nucleocytoplasmic Shuttling of the Cdc42p Exchange Factor Cdc24p, J. Cell Biol., 2000, vol. 148, pp. 1115–1122.

    Article  PubMed  CAS  Google Scholar 

  96. Gulli, M.P., Jaquenoud, M., Shimada, Y., et al., Phosphorylation of the Cdc42 Exchange Factor Cdc24 by the PAK-Like Kinase Cla4 May Regulate Polarized Growth in Yeast, Mol. Cell, 2000, vol. 6, pp. 1155–1167.

    Article  PubMed  CAS  Google Scholar 

  97. Sopko, R., Huang, D., Smith, J.C., et al., Activation of the Cdc42 GTPase by Cyclin-Dependent Protein Kinases in Budding Yeast, EMBO J., 2007, vol. 26, pp. 4487–4500.

    Article  PubMed  CAS  Google Scholar 

  98. McCusker, D., Denison, C., Anderson, S., et al., Cdk1 Coordinates Cell-Surface Growth with the Cell Cycle, Nat. Cell Biol., 2007, vol. 9, pp. 506–515.

    Article  PubMed  CAS  Google Scholar 

  99. Pruyne, D. and Bretscher, A., Polarization of Cell Growth in Yeast: 1. Establishment and Maintenance of Polarity States, J. Cell Sci., 2000, vol. 113, pp. 365–375.

    PubMed  CAS  Google Scholar 

  100. Boldogh, I.R., Fehrenbacher, K.L., Yang, H.C., et al., Mitochondrial Movement and Inheritance in Budding Yeast, Gene, 2005, vol. 354, pp. 28–36.

    Article  PubMed  CAS  Google Scholar 

  101. Boldogh, I.R. and Pon, L.A., Interactions of Mitochondria with Actin Cytoskeleton, Biochim. Biophys. Acta, 2006, vol. 1763, pp. 450–462.

    Article  PubMed  CAS  Google Scholar 

  102. Drubin, D.G., Jones, H.D., and Wertman, K.F., Actin Structure and Function: Roles in Mitochondrial Organization and Morphogenesis in Budding Yeast and Identification of the Phalloidin-Binding Site, Mol. Biol. Cell, 1993, vol. 4, pp. 1277–1294.

    PubMed  CAS  Google Scholar 

  103. Lazarino, D.A., Boldogh, I., Smith, M.G., et al., Yeast Mitochondria Contain ATP-Sensitive, Reversible Actin-Binding Activity, Mol. Biol. Cell, 1994, vol. 5, pp. 807–818.

    Google Scholar 

  104. Fagarasanu, A. and Rachubinski, R.A., Orchestrating Organelle Inheritance in Saccharomyces cerevisiae, Curr. Opin. Microbiol., 2007, vol. 10, pp. 528–538.

    Article  PubMed  CAS  Google Scholar 

  105. Peng, Y. and Weisman, L.S., The Cyclin-Dependent Kinase Cdk1 Directly Regulates Vacuole Inheritance, Dev. Cell, 2008, vol. 15, pp. 478–485.

    Article  PubMed  CAS  Google Scholar 

  106. Ishikawa, K., Catlett, N.L., Novak, J.L., et al., Identification of an Organelle-Specific Myosin V Receptor, J. Cell Biol., 2003, vol. 160, pp. 887–897.

    Article  PubMed  CAS  Google Scholar 

  107. Moore, J.K. and Miller, R.K., The Cyclin-Dependent Kinase Cdc28p Regulates Multiple Aspects of Kar9p Function in Yeast, Mol. Biol. Cell, 2007, vol. 18, pp. 1187–1202.

    Article  PubMed  CAS  Google Scholar 

  108. Wittenberg, C., Richardson, S.L., and Reed, S.I., Subcellular Localization of a Protein Kinase Required for Cell Cycle Initiation in S. cerevisiae: Evidence for an Association between the CDC28 Gene Product and the Insoluble Cytoplasmic Matrix, J. Cell Biol., 1987, vol. 105, pp. 1527–1538.

    Article  PubMed  CAS  Google Scholar 

  109. Du, Y., Ferro-Novick, S., and Novick, P., Dynamics and Inheritance of the Endoplasmic Reticulum, J. Cell Sci., 2004, vol. 117, pp. 2871–2878.

    Article  PubMed  CAS  Google Scholar 

  110. Prinz, W.A., Grzyb, M., Veenhuis, J.A., et al., Mutants Affecting the Structure of the Cortical Endoplasmic Reticulum in S. cerevisiae, J. Cell Biol., 2000, vol. 150, pp. 461–474.

    Article  PubMed  CAS  Google Scholar 

  111. Park, H.O., Bi, E., Pringle, J.R., et al., Two Active States of the Ras-Related Bud1/Rsr1 Protein Bind to Different Effectors to Determine Yeast Cell Polarity, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 4463–4468.

    Article  PubMed  CAS  Google Scholar 

  112. Han, B.K., Bogomolnaya, L.M., Totte, J.M., et al., Bem1p, a Scaffold Signaling Protein, Mediates Cyclin-Dependent Control of Vacuolar Homeostasis in Saccharomyces cerevisiae, Genes Dev., 2005, vol. 19, pp. 2606–2616.

    Article  PubMed  CAS  Google Scholar 

  113. Boldogh, I.R., Nowakowski, D.W., Yang, H.C., et al., A Protein Complex Containing Mdm10p, Mdm12p, and Mmm1p Links Mitochondrial Membranes and DNA to the Cytoskeleton-Based Segregation Machinery, Mol. Biol. Cell, 2003, vol. 14, pp. 4618–4627.

    Article  PubMed  CAS  Google Scholar 

  114. Hobbs, A.E., Srinivasan, M., McCaffery, J.M., and Jensen, R.E., Mmm1p, a Mitochondrial Outer Membrane Protein, Is Connected to Mitochondrial DNA (mtDNA) Nucleoids and Required for mtDNA Stability, J. Cell Biol., 2001, vol. 152, pp. 401–410.

    Article  PubMed  CAS  Google Scholar 

  115. Koltovaya N.A., Karviga T.D., Lyubimova K.A., et al., Radiosensitivity of Yeast and SRM Genes: Effects of Srm1 and Srm5 Mutations, Russ. J. Genet., 1998, vol. 34, no. 5, pp. 493–506.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Koltovaya.

Additional information

Original Russian Text © N.A. Koltovaya, 2013, published in Genetika, 2013, Vol. 49, No. 7, pp. 797–813.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koltovaya, N.A. Involvement of cyclin-dependent kinase CDK1/CDC28 in regulation of cell cycle. Russ J Genet 49, 691–706 (2013). https://doi.org/10.1134/S1022795413050086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795413050086

Keywords

Navigation