Russian Journal of Genetics

, Volume 49, Issue 2, pp 246–254 | Cite as

The 5q31 region in two African populations as a facet of natural selection by infectious diseases

  • A. A. M. Elhassan
  • A. A. Hussein
  • H. S. Mohamed
  • K. Rockett
  • D. Kwiatkowski
  • A. M. Elhassan
  • M. E. IbrahimEmail author
Human Genetics


Cases of extreme natural selection could lead either to rapid fixation or extinction of alleles depending on the population structure and size. It may also manifest in excess of heterozygosity and the locus concerned will be displaying such drastic features of allele change. We suspect the 5q31 in chromosome 5 to mirror situation of such extreme natural selection particularly that the region encompasses genes of type 2 cytokine known to associate with a number of infectious and non-infectious diseases.

We typed two sets of single nucleotide polymorphisms (SNPS) in two populations: an initial limited set of only 4 SNP within the genes of IL-4, IL-13, IL-5 and IL-9 in 108 unrelated individuals and a replicating set of 14 SNP in 924 individuals from the same populations with disregard to relatedness. The results suggest the 5q31 area to be under intense selective pressure as indicated by marked heterozygosity independent of Linkage Disequilibrium (LD); difference in heterozygosity, allele, and haplotype frequencies between generations and departure from Hardy-Weinberg expectations (DHWE). The study area is endemic for several infectious diseases including malaria and visceral leishmaniasis (VL). Malaria caused by Plasmodium falciparum, however, occurs mostly with mild clinical symptoms in all ages, which makes it unlikely to account for these indices. The strong selection signals seems to emanate from recent outbreaks of VL which affected both populations to varying extent.


Malaria Visceral Leishmaniasis AFRICAN Population Cutaneous Leishmaniasis Lactase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lipsitch, M. and Sousa, A.O., Historical Intensity of Natural Selection for Resistance to Tuberculosis, Genetics, 2002, vol. 161, pp. 1599–1607.PubMedGoogle Scholar
  2. 2.
    Hill, A.V., The Immunogenetics of Human Infectious Diseases, Annu. Rev., Immunol., 1998, vol. 16, pp. 593–617.CrossRefGoogle Scholar
  3. 3.
    Kwiatkowski, D., Genetic Susceptibility to Malaria Getting Complex, Curr. Opin. Genet. Dev., 2000, vol. 10, pp. 320–324.PubMedCrossRefGoogle Scholar
  4. 4.
    Lengeling, A., Pfeffer, K., and Balling, R., The Battle of Two Genomes: Genetics of Bacterial Host/Pathogen Interactions in Mice, Mamm. Genome, 2001, vol. 12, no. 4, pp. 261–271.PubMedCrossRefGoogle Scholar
  5. 5.
    Wertheim, K., Kutkowska-Kaz-mierczak, A., and Bal, J., Genetically Determined Human Susceptibility to Selected Infectious Diseases, Med. Wieku Rozwoj, 2008, vol. 12, no. 3, pp. 738–747.PubMedGoogle Scholar
  6. 6.
    Harris, E.E. and Meyer, D., The Molecular Signature of Selection Underlying Human Adaptations, Am. J. Phys. Anthropol., 2006, vol. 43, pp. 89–130.PubMedCrossRefGoogle Scholar
  7. 7.
    Salih, N.A., Almugtaba, I., Elzein, M.E., et al., Loss of Balancing Selection in the S, Globin Locus in a Nonpanmictic African Population, BMC Med. Genetics, 2010, vol. 3, pp. 11–21.CrossRefGoogle Scholar
  8. 8.
    Perea, W.A., Moren, A., Ancelle, T., Sondorp, E., Epidemic Visceral Leishmaniasis in Southern Sudan, Lancet, 1989, pp. 1222–1223.Google Scholar
  9. 9.
    Seaman, J., Mercer, A.J., Sondorp, E., The Epidemic of Visceral Leishmaniasis in Western Upper Nile, Southern Sudan: Course and Impact from 1984 to 1994, Int. J. Epidemiol., vol. 25, pp. 862–871.Google Scholar
  10. 10.
    Ibrahim, M.E., Lambson, B., Yousif, A.O., et al., Kalaazar in a High Transmission Focus: an Ethnic and Geographic Dimension, Am. J. Trop. Med. Hyg., 1999, vol. 61(6), pp. 941–944.PubMedGoogle Scholar
  11. 11.
    El Hassan, A.M., Ziljstra, E.E., Ismael, A., Ghallb, H.W., Recent Observations on the Epidemiology of Kala-azar in the Eastern and Central States of the Sudan, Trop. Geogr. Med., 1995, vol. 47, pp. 151–156.PubMedGoogle Scholar
  12. 12.
    Mohamed, H., Ibrahim, M.E., Miller, E.N., et al., SLC11A1 (formerly NRAMP1) and Susceptibility to Visceral Leishmaniasis in the Sudan, Europ. J. Human Genetics, 2004, vol. 12, pp. 63–74.Google Scholar
  13. 13.
    Mohamed, H.S., Ibrahim, M.E., Miller, E.N., et al., Susceptibility to Visceral Leishmaniasis in the Sudan: Linkage and Association with IL-4 and IFNGR1. Genes and Immunity, 2003, vol. 4, pp. 351–355.PubMedCrossRefGoogle Scholar
  14. 14.
    Frazer, K.A., Ueda, Y., Zhu, Y., et al., Computational and Biological Analysis of 680 kb of DNA Sequence from the Human 5q31 Cytokine Gene Cluster Region, Genome Res., 1997, vol. 7, pp. 495–512.PubMedGoogle Scholar
  15. 15.
    Rihet, P., Traore, Y., Abel, L., et al., Malaria in humans: Plasmodium Falciparum Blood Infection Levels are Linked to Chromosome 5q31-q33, Am. J. Hum. Genet., 1998, vol. 63, pp. 498–505.PubMedCrossRefGoogle Scholar
  16. 16.
    Ohashi, J., Naka, I., Patarapotikul, J., et al., A Single-nucleotide Substitution from C to T at Position −1055 in the IL-13 Promoter is Associated with Protection from Severe Malaria in Thailand, Genes Immunol., 2003, vol. 4(7), pp. 528–531.CrossRefGoogle Scholar
  17. 17.
    Flori, L., Kumulungui, B., Aucan, C., et al., Linkage and Association Between Plasmodium Falciparum Blood Infection Levels and Chromosome 5q31-q33, Genes Immunol., 2003, vol. 4, no. 4, pp. 265–268.CrossRefGoogle Scholar
  18. 18.
    Naka, I., Nishida, N., Patarapotikul, J., et al., Identification of a Haplotype Block in the 5q31 Cytokine Gene Cluster Associated with the Susceptibility to Severe Malaria, Malar. J., 2009, vol. 8, pp. 232–237.PubMedCrossRefGoogle Scholar
  19. 19.
    Wills-Karp, M., The gene encoding interleukin-13: a Susceptibility Locus for Asthma and Related Traits, Respir. Res., 2000, vol. 1, no. 1, pp. 19–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Marsh, D., Neely, J.D., Breazeale, D.R., et al., Linkage Analysis of IL-4 and other Chromosome 5q31.1 Markers and Total Serum Immunoglobulin E Concentrations, Science, 1994, vol. 264, pp. 1152–1156.PubMedCrossRefGoogle Scholar
  21. 21.
    Bleecker, E.R., Amelung, P.J., Levitt, R.C., et al., Evidence for Linkage of Total Serum IgE and Bronchial Hyperresponsiveness to Chromosome 5q: A Major Regulatory Locus Important in Asthma, Clin. & Exp. Allergy, 1995, vol. 25, pp. 84–88.CrossRefGoogle Scholar
  22. 22.
    Postma, D.S., Bleecker, E.R., Amelung, P.J., et al., Genetic Susceptibility to Asthma: Bronchial Hyperresponsiveness Coinherited with a Major Gene for Atopy, N. Engl. J. Med., 1995, vol. 333, pp. 894–900.PubMedCrossRefGoogle Scholar
  23. 23.
    Jallow, M., Teo, Y.Y., Small, K.S., et al., Genome-wide and Fine-resolution Association Analysis of Malaria in West Africa, Nat. Genet., 2009, vol. 41, no. 6, pp. 657–665.PubMedCrossRefGoogle Scholar
  24. 24.
    Zaharieva, I., Georgieva, L., Nikolov, I., et al., Association Study in the 5q31-32 Linkage Region for Schizophrenia Using Pooled DNA Genotyping, BMC Psychiatry, 2008, pp. 8; doi:10.1186/1471-244X-8-11.Google Scholar
  25. 25.
    Chu, X., Dong, C., Lei, R., at al., Polymorphisms in the Interleukin 3 Gene Show Strong Association with Susceptibility to Graves’ Disease in Chinese Population, Genes Immunol., 2009, vol. 10, pp. 260–266.CrossRefGoogle Scholar
  26. 26.
    Rihet, P., Traore, Y., Abel, L., et al., Malaria in humans: Plasmodium Falciparum Blood Infection Levels are Linked to Chromosome 5q31-q33, Am. J. Hum. Genet., 1998, vol. 63, pp. 498–505.PubMedCrossRefGoogle Scholar
  27. 27.
    Milet, J., Nuel, G., Watier, L., et al., Genome Wide Linkage Study, Using a 250K SNP map, of Plasmodium Falciparum Infection and Mild Malaria Attack in a Senegalese Population, PLoS One, 2010, vol. 5, no. 7, e11616.PubMedCrossRefGoogle Scholar
  28. 28.
    Hassan, H.Y., Underhill, P.A., Cavalli-Sforza, L.L., Ibrahim, M.E., Y-chromosome Variation Among Sudanese: Restricted Gene Flow, Concordance with Language, Geography, and History, Am. J. Phys. Anthropol., 2008, vol. 137, no. 3, pp. 316–323.PubMedCrossRefGoogle Scholar
  29. 29.
    Bowcock, A.M., Ruiz-Linares, A., Tomfohrde, J., et al., High Resolution of Human Evolutionary Trees with Polymorphic Microsatellites, Nature, 1994, vol. 368, pp. 455–457.PubMedCrossRefGoogle Scholar
  30. 30.
    Sakagami, T., Witherspoon, D.J., Nakajima, T., et al., Local Adaptation and Population Differentiation at the Interleukin 13 and Interleukin 4 loci, Genes Immunol., 2004, vol. 5, pp. 389–397.CrossRefGoogle Scholar
  31. 31.
    Wood, E.T., Stover, D.A., Slatkin, M., et al., The beta-Globin Recombinational Hotspot Reduces the Effects of Strong Selection around HbC, a Recently Arisen Mutation Providing Resistance to Malaria, Am. J. Hum. Genet., 2005, vol. 77, pp. 637–642.PubMedCrossRefGoogle Scholar
  32. 32.
    Hollox, E.J., Poulter, M., Zvarik, M., et al., Lactase Haplotypes Diversity in the Old World, Amer. J. Human Genetics, 2001, vol. 68, pp. 160–172.CrossRefGoogle Scholar
  33. 33.
    Deng, H., Fu, Y., Conditions for Positive and Negative Correlations between Fitness and Heterozygosity in Equilibrium Populations, Genetics, 1998, vol. 148, pp. 1333–1340.PubMedGoogle Scholar
  34. 34.
    Tishkoff, S.A., Williams, S.M., Genetic Analysis of African Populations: Human Evolution and Complex Disease, Nat. Rev. Genet., 2002, vol. 3, no. 8, pp. 611–621.PubMedGoogle Scholar
  35. 35.
    Zhu, Z., Yan, D., Cooper, R.S., Linkage Disequilibrium and Haplotype Diversity in the Genes of the Renin-Angiotensin System: Findings from the Family Blood Pressure Program, Genome Res., 2003, vol. 13,Issue 2, pp. 173–181.PubMedCrossRefGoogle Scholar
  36. 36.
    Tarazona-Santos, E., Tishkoff, S.A., Divergent patterns of Linkage Disequilibrium and Haplotype Structure Across Global Populations at the Interleukin-13 (IL13) locus, Genes Immunol., 2005, vol. 6, no. 1, pp. 53–65.Google Scholar
  37. 37.
    Ziljstra, E.E., El-Hassan, A.M., Leishmaniasis in Sudan.Visceral Leishmaniasis, Trans R. Soc. Trop. Med. Hyg., 2001, Suppl. 1, pp. 27–58.Google Scholar
  38. 38.
    Ibrahim, M.E., The Epidemiology of Visceral Leishmaniasis in east Africa: Hints and Molecular Revelations, Trans R. Soc. Trop. Med. Hyg., 2002, vol. 96,Suppl. 1, pp. 25–29.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. A. M. Elhassan
    • 1
  • A. A. Hussein
    • 1
    • 4
  • H. S. Mohamed
    • 1
  • K. Rockett
    • 2
    • 4
  • D. Kwiatkowski
    • 2
    • 3
    • 4
  • A. M. Elhassan
    • 1
  • M. E. Ibrahim
    • 1
    • 4
    Email author
  1. 1.Unit of Disease and Diversity, Department of Molecular Biology, Institute of Endemic DiseasesUniversity of KhartoumKhartoumSudan
  2. 2.Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
  3. 3.Wellcome Trust Sanger InstituteHinxton, CambridgeshireUK
  4. 4.The MalariaGEN ConsortiumCambridgeUK

Personalised recommendations