Skip to main content
Log in

Transcription regulatory codes of eukaryotic genomes

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The key aspects of transcription regulation in multicellular organisms were discussed in the paper, including characteristics of promoters, transcription factor binding sites and composite elements. The functional roles of transcriptional regulators (GTFs and transcription factors) were described together with mechanisms, which regulate its activity. The importance of DNA-encoded nucleosome organization and chromatin modifications for the process of transcription regulation have been declared. Also the significance of mechanisms which regulate activity of transcription factors within Gene Networks have been stressed. In light of recent data transcriptional regulatory codes of a eukaryotic genome were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ratner, V.A., Geneticheskie upravlyayushchie sistemy (Genetic Regulatory Systems), Novosibirsk: Nauka, 1966.

    Google Scholar 

  2. Jakob, F. and Monod, J., On the Regulation of Gene Activity, Cold Spring Harbor Symp. Quant. Biol., 1961, vol. 26, pp. 193–211.

    Article  Google Scholar 

  3. Ratner, V.A., Printsipy organizatsii i mekhanizmy molekulyarno-geneticheskikh protsessov (Molecular-Genetic Processes: Principles of Organization and Mechanisms), Novosibirsk: Nauka, 1972.

    Google Scholar 

  4. Ratner, V.A., The Role of Mobile Genetic Elements (MGE) in Microevolution, Genetika (Moscow), 1992, vol. 28, pp. 5–17.

    Google Scholar 

  5. Payvar, F., Wrange, O., Carlstedt-Duke, J., et al., Purified Glucocorticoid Receptors Bind Selectively in vitro to a Cloned DNA Fragment Whose Transcription Is Regulated by Glucocorticoids in vivo, Proc. Natl. Acad. Sci. U.S.A., 1981, vol. 78, pp. 6628–6632.

    Article  PubMed  CAS  Google Scholar 

  6. Karin, M., Haslinger, H., Holtgreve, H., et al., Characterization of DNA Sequences through Which Cadmium and Glucocorticoid Hormones Induce Human Metallothionein IIA Gene, Nature, 1984, vol. 308, pp. 513–519.

    Article  PubMed  CAS  Google Scholar 

  7. Renkawitz, R., Schutz, G., von der Ahe, D., and Beato, M., Sequence in the Promoter Region of the Chicken Lysozyme Gene Required for Steroid Regulation and Receptor Binding, Cell, 1984, vol. 37, pp. 503–510.

    Article  PubMed  CAS  Google Scholar 

  8. Baumruker, T., Sturm, R., and von der Herr, W., OBP100 Binds Remarkably Degenerate Octamer Motifs through Specific Interactions with Flanking Sequences, Genes Dev., 1988, vol. 2, pp. 1400–1413.

    Article  PubMed  CAS  Google Scholar 

  9. Hennighausen, L. and Fleckenstein, B., Nuclear Factor 1 Interacts with Five DNA Elements in the Promoter Region of the Human Cytomegalovirus Major Immediate Early Gene, EMBO J., 1986, vol. 5, pp. 1367–1371.

    PubMed  CAS  Google Scholar 

  10. Dynan, W.S. and Tjian, R., The Promoter-Specific Transcription Factor Sp1 Binds to Upstream Sequences in the SV40 Early Promoter, Cell, 1983, vol. 35, pp. 79–87.

    Article  PubMed  CAS  Google Scholar 

  11. Kolchanov, N.A., Ignatieva, E.V., Ananko, E.A., et al., Transcription Regulatory Regions Database (TRRD): Its Status in 2002, Nucleic Acids Res., 2002, vol. 30, pp. 312–317.

    Article  PubMed  CAS  Google Scholar 

  12. Matys, V., Kel-Margoulis, O.V., Fricke, E., et al., TRANSFAC and Its Module TRANSCompel: Transcriptional Gene Regulation in Eukaryotes, Nucleic Acids Res., 2006, vol. 34, pp. D108–D110.

    Article  PubMed  CAS  Google Scholar 

  13. Portales-Casamar, E., Thongjuea, S., Kwon, A.T., et al., JASPAR 2010: The Greatly Expanded Open-Access Database of Transcription Factor Binding Profiles, Nucleic Acids Res., 2010, vol. 38, pp. D105–D110.

    Article  PubMed  CAS  Google Scholar 

  14. Charoensawan, V., Wilson, D., and Teichmann, S.A., Genomic Repertoires of DNA-Binding Transcription Factors across the Tree of Life, Nucleic Acids Res., 2010, vol. 38, pp. 7364–7377.

    Article  PubMed  CAS  Google Scholar 

  15. Hager, G.L., Mcnally, J.G., and Misteli, T., Transcription Dynamics, Mol. Cell, 2009, vol. 35, pp. 741–753.

    Article  PubMed  CAS  Google Scholar 

  16. Lelievre, S.A., Contributions of Extracellular Matrix Signaling and Tissue Architecture to Nuclear Mechanisms and Spatial Organization of Gene Expression Control, Biochim. Biophys. Acta, 2009, vol. 1790, pp. 925–935.

    Article  PubMed  CAS  Google Scholar 

  17. Tsai, C.J. and Nussinov, R., Gene-Specific Transcription Activation via Long-Range Allosteric Shape-Shifting, Biochem. J., 2011, vol. 439, pp. 15–25.

    Article  PubMed  CAS  Google Scholar 

  18. He, L., Liu, H., and Tang, L., SWI/SNF Chromatin Remodeling Complex: A New Cofactor in Reprogramming, Stem Cell Rev., 2012, vol. 8, pp. 128–136.

    Article  PubMed  CAS  Google Scholar 

  19. Trifonov, E.N., Thirty Years of Multiple Sequence Codes, Genomics Proteomics Bioinform., 2011, vol. 9, pp. 1–6.

    Article  CAS  Google Scholar 

  20. Trifonov, E.N., The Multiple Codes of Nucleotide Sequences, Bull. Math. Biol., 1989, vol. 51, pp. 417–432.

    PubMed  CAS  Google Scholar 

  21. Trifonov, E.N., Genetic Level of DNA Sequences Is Determined by Superposition of Many Codes, Mol. Biol. (Moscow), 1997, vol. 31, no. 4, pp. 759–767.

    CAS  Google Scholar 

  22. Benos, P.V., Lapedes, A.S., and Stormo, G.D., Is There a Code for Protein-DNA Recognition? Probab(ilistical)ly, BioEssays, 2002, vol. 24, pp. 466–475.

    Article  PubMed  CAS  Google Scholar 

  23. Kolchanov, N.A., Merkulova, T.I., Ignatieva, E.V., et al., Combined Experimental and Computational Approaches to Study the Regulatory Elements in Eukaryotic Genes, Brief. Bioinform., 2007, vol. 8, pp. 266–274.

    Article  PubMed  CAS  Google Scholar 

  24. Frith, M.C., Valen, E., Krogh, A., et al., A Code for Transcription Initiation in Mammalian Genomes, Genome Res., 2008, vol. 18, pp. 1–12.

    Article  PubMed  CAS  Google Scholar 

  25. Fuda, N.J., Ardehali, M.B., and Lis, J.T., Defining Mechanisms That Regulate RNA Polymerase II Transcription in vivo, Nature, 2009, vol. 461, pp. 186–192.

    Article  PubMed  CAS  Google Scholar 

  26. Luco, R.F. and Misteli, T., More Than a Splicing Code: Integrating the Role of RNA, Chromatin and Non-Coding RNA in Alternative Splicing Regulation, Curr. Opin. Genet. Dev., 2011, vol. 21, pp. 366–372.

    Article  PubMed  CAS  Google Scholar 

  27. Choi, J.K. and Kim, Y.J., Implications of the Nucleosome Code in Regulatory Variation, Adaptation and Evolution, Epigenetics, 2009, vol. 4, pp. 291–295.

    Article  PubMed  Google Scholar 

  28. Strahl, B.D. and Allis, C.D., The Language of Covalent Histone Modifications, Nature, 2000, vol. 403, pp. 41–45.

    Article  PubMed  CAS  Google Scholar 

  29. Lieberman-Aiden, E., Van Berkum, N.L., Williams, L., et al., Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome, Science, 2009, vol. 326, pp. 289–293.

    Article  PubMed  CAS  Google Scholar 

  30. Li, G., Ruan, X., Auerbach, R.K., et al., Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation, Cell, 2012, vol. 148, pp. 84–98.

    Article  PubMed  CAS  Google Scholar 

  31. Juven-Gershon, T. and Kadonaga, J.T., Regulation of Gene Expression via the Core Promoter and the Basal Transcriptional Machinery, Dev. Biol., 2010, vol. 339, pp. 225–229.

    Article  PubMed  CAS  Google Scholar 

  32. Sikorski, T.W. and Buratowski, S., The Basal Initiation Machinery: Beyond the General Transcription Factors, Curr. Opin. Cell Biol., 2009, vol. 21, pp. 344–351.

    Article  PubMed  CAS  Google Scholar 

  33. Sverdlov, E.D. and Vinogradova, T.V., Core Promoters as an Example of the Evolution of Views on Molecular Mechanisms of Vital Activity under the Impact of Whole-Genome Information, Mol. Biol. (Moscow), 2010, vol. 44, pp. 773–785.

    Article  CAS  Google Scholar 

  34. Goodrich, J.A. and Tjian, R., Unexpected Roles for Core Promoter Recognition Factors in Cell-Type-Specific Transcription and Gene Regulation, Nat. Rev. Genet., 2010, vol. 11, pp. 549–558.

    Article  PubMed  CAS  Google Scholar 

  35. Austen, M., Luscher, B., and Luscher-Firzlaff, J.M., Characterization of the Transcriptional Regulator YY1: The Bipartite Transactivation Domain Is Independent of Interaction with the TATA Box-Binding Protein, Transcription Factor IIB, TAFII55, or cAMP-Responsive Element-Binding Protein (CPB)-Binding Protein, J. Biol. Chem., 1997, vol. 272, pp. 1709–1717.

    Article  PubMed  CAS  Google Scholar 

  36. Stojanova, A., Caro, C., Jarjour, R.J., et al., Repression of the Human Immunodeficiency Virus Type-1 Long Terminal Repeat by the c-Myc Oncoprotein, J. Cell Biochem., 2004, vol. 92, pp. 400–413.

    Article  PubMed  CAS  Google Scholar 

  37. Dolfini, D., Gatta, R., and Mantovani, R., NF-Y and the Transcriptional Activation of CCAAT Promoters, Crit. Rev. Biochem. Mol. Biol., 2012, vol. 47, pp. 29–49.

    Article  PubMed  CAS  Google Scholar 

  38. Lenhard, B., Sandelin, A., and Carninci, P., Metazoan Promoters: Emerging Characteristics and Insights into Transcriptional Regulation, Nat. Rev. Genet., 2012, vol. 13, pp. 233–245.

    PubMed  CAS  Google Scholar 

  39. Kim, T.H., Barrera, L.O., Zheng, M., et al., A High-Resolution Map of Active Promoters in the Human Genome, Nature, 2005, vol. 436, pp. 876–880.

    Article  PubMed  CAS  Google Scholar 

  40. Cooper, S.J., Trinklein, N.D., Anton, E.D., et al., Comprehensive Analysis of Transcriptional Promoter Structure and Function in 1% of the Human Genome, Genome Res., 2006, vol. 16, pp. 1–10.

    Article  PubMed  CAS  Google Scholar 

  41. FitzGerald, P.C., Sturgill, D., Shyakhtenko, A., et al., Comparative Genomics of Drosophila and Human Core Promoters, Genome Biol., 2006, vol. 7, p. R53.

    Article  PubMed  CAS  Google Scholar 

  42. Burke, T.W. and Kadonaga, J.T., Drosophila TFIID Binds to a Conserved Downstream Basal Promoter Element That Is Present in Many TATA-Box-Deficient Promoters, Genes Dev., 1996, vol. 10, pp. 711–724.

    Article  PubMed  CAS  Google Scholar 

  43. Burke, T.W. and Kadonaga, J.T., The Downstream Core Promoter Element, DPE, Is Conserved from Drosophila to Humans and Is Recognized by TAFII60 of Drosophila, Genes Dev., 1997, vol. 11, pp. 3020–3031.

    Article  PubMed  CAS  Google Scholar 

  44. Evans, R., Fairley, J.A., and Roberts, S.G., Activator-Mediated Disruption of Sequence-Specific DNA Contacts by the General Transcription Factor TFIIB, Genes Dev., 2001, vol. 15, pp. 2945–2949.

    Article  PubMed  CAS  Google Scholar 

  45. Deng, W. and Roberts, S.G., A Core Promoter Element Downstream of the TATA Box That Is Recognized by TFIIB, Genes Dev., 2005, vol. 19, pp. 2418–2423.

    Article  PubMed  CAS  Google Scholar 

  46. Juven-Gershon, T., Cheng, S., and Kadonaga, J.T., Rational Design of a Super Core Promoter That Enhances Gene Expression, Nat. Methods, 2006, vol. 3, pp. 917–922.

    Article  PubMed  CAS  Google Scholar 

  47. Saxonov, S., Berg, P., and Brutlag, D.L., A Genome-Wide Analysis of CpG Dinucleotides in the Human Genome Distinguishes Two Distinct Classes of Promoters, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, pp. 1412–1417.

    Article  PubMed  CAS  Google Scholar 

  48. Valen, E. and Sandelin, A., Genomic and Chromatin Signals Underlying Transcription Start-Site Selection, Trends Genet., 2011, vol. 27, pp. 475–485.

    Article  PubMed  CAS  Google Scholar 

  49. Bernstein, B.E., Mikkelsen, T.S., Xie, X., et al., A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells, Cell, 2006, vol. 125, pp. 315–326.

    Article  PubMed  CAS  Google Scholar 

  50. Raiber, E.A., Kranaster, R., Lam, E., et al., A Non-Canonical DNA Structure Is a Binding Motif for the Transcription Factor SP1 in vitro, Nucleic Acids Res., 2012, vol. 40, pp. 1499–1508.

    Article  PubMed  CAS  Google Scholar 

  51. Deaton, A.M. and Bird, A., CpG Islands and the Regulation of Transcription, Genes Dev., 2011, vol. 25, pp. 1010–1022.

    Article  PubMed  CAS  Google Scholar 

  52. Butler, J.E. and Kadonaga, J.T., The RNA Polymerase II Core Promoter: A Key Component in the Regulation of Gene Expression, Genes Dev., 2002, vol. 16, pp. 2583–2592.

    Article  PubMed  CAS  Google Scholar 

  53. Schaefer, U., Schmeier, S., and Bajic, V.B., TcoF-DB: Dragon Database for Human Transcription Co-Factors and Transcription Factor Interacting Proteins, Nucleic Acids Res., 2011, vol. 39, pp. D106–D110.

    Article  PubMed  Google Scholar 

  54. Zhang, H.M., Chen, H., Liu, W., et al., AnimalTFDB: A Comprehensive Animal Transcription Factor Database, Nucleic Acids Res., 2012, vol. 40, pp. D144–D149.

    Article  PubMed  CAS  Google Scholar 

  55. Wingender, E., Classification of Eukaryotic Transcription Factors, Mol. Biol. (Moscow), 1997, vol. 31, no. 4, pp. 584–600.

    CAS  Google Scholar 

  56. Badis, G., Berger, M.F., Philippakis, A.A., et al., Diversity and Complexity in DNA Recognition by Transcription Factors, Science, 2009, vol. 324, pp. 1720–1723.

    Article  PubMed  CAS  Google Scholar 

  57. Ohler, U. and Wassarman, D.A., Promoting Developmental Transcription, Development, 2010, vol. 137, pp. 15–26.

    Article  PubMed  CAS  Google Scholar 

  58. Smirnov, A.N., Nuclear Receptors: Nomenclature, Ligands, Mechanisms of Their Effects on Gene Expression, Biochemistry (Moscow), 2002, vol. 67, pp. 957–977.

    Article  CAS  Google Scholar 

  59. Liu, T. and Feng, X.H., Regulation of TGF-Beta Signaling by Protein Phosphatases, Biochem. J., 2010, vol. 430, pp. 191–198.

    Article  PubMed  CAS  Google Scholar 

  60. Murphy, L.C., Seekallu, S.V., and Watson, P.H., Clinical Significance of Estrogen Receptor Phosphorylation, Endocr. Relat. Cancer, 2011, vol. 18, pp. R1–R14.

    Article  PubMed  CAS  Google Scholar 

  61. Cheon, H., Yang, J., and Stark, G.R., The Functions of Signal Transducers and Activators of Transcriptions 1 and 3 as Cytokine-Inducible Proteins, J. Interferon Cytokine Res., 2011, vol. 31, pp. 33–40.

    Article  PubMed  CAS  Google Scholar 

  62. Chen, L.F., Mu, Y., and Greene, W.C., Acetylation of RelA at Discrete Sites Regulates Distinct Nuclear Functions of NF-KappaB, EMBO J., 2002, vol. 21, pp. 6539–6548.

    Article  PubMed  CAS  Google Scholar 

  63. Liu, Y., Bridges, R., Wortham, A., and Kulesz-Martin, M., NF-KappaB Repression by PIAS3 Mediated RelA SUMOylation, PLoS One, 2012, vol. 7, e37636.

  64. Ye, S., Xu, H., Jin, J., et al., The E3 Ubiquitin Ligase Neuregulin Receptor Degradation Protein 1 (Nrdp1) Promotes M2 Macrophage Polarization by Ubiquitinating and Activating Transcription Factor CCAAT/Enhancer-Binding Protein Beta (C/EBPbeta), J. Biol. Chem., 2012, vol. 287, pp. 26740–26748.

    Article  PubMed  CAS  Google Scholar 

  65. Perkins, N.D., Post-Translational Modifications Regulating the Activity and Function of the Nuclear Factor Kappa B Pathway, Oncogene, 2006, vol. 25, pp. 6717–6730.

    Article  PubMed  CAS  Google Scholar 

  66. Kim, M.Y., Bae, J.S., Kim, T.H., et al., Role of Transcription Factor Modifications in the Pathogenesis of Insulin Resistance, Exp. Diabetes Res., 2011, vol. 2012, p. 716425.

    PubMed  Google Scholar 

  67. Cai, N., Li, M., Qu, J., et al., Post-Translational Modulation of Pluripotency, J. Mol. Cell Biol., 2012, vol. 4, pp. 262–265.

    Article  PubMed  CAS  Google Scholar 

  68. Zaret, K.S. and Carroll, J.S., Pioneer Transcription Factors: Establishing Competence for Gene Expression, Genes Dev., 2011, vol. 25, pp. 2227–2241.

    Article  PubMed  CAS  Google Scholar 

  69. Magnani, L., Eeckhoute, J., and Lupien, M., Pioneer Factors: Directing Transcriptional Regulators within the Chromatin Environment, Trends Genet., 2011, vol. 27, pp. 465–474.

    Article  PubMed  CAS  Google Scholar 

  70. Nagaich, A.K., Walker, D.A., Wolford, R., and Hager, G.L., Rapid Periodic Binding and Displacement of the Glucocorticoid Receptor during Chromatin Remodeling, Mol. Cell, 2004, vol. 14, pp. 163–174.

    Article  PubMed  CAS  Google Scholar 

  71. Stromstedt, P.E., Poellinger, L., Gustafsson, J.A., and Carlstedt-Duke, J., The Glucocorticoid Receptor Binds to a Sequence Overlapping the TATA Box of the Human Osteocalcin Promoter: A Potential Mechanism for Negative Regulation, Mol. Cell Biol., 1991, vol. 11, pp. 3379–3383.

    PubMed  CAS  Google Scholar 

  72. Merkulov, V.M. and Merkulova, T.I., Structural Variants of Glucocorticoid Receptor Binding Sites and Different Versions of Positive Glucocorticoid Responsive Elements: Analysis of GR-TRRD Database, J. Steroid Biochem. Mol. Biol., 2009, vol. 115, pp. 1–8.

    Article  PubMed  CAS  Google Scholar 

  73. Nourbakhsh, M., Kalble, S., Dorrie, A., et al., The NF-Kappa b Repressing Factor Is Involved in Basal Repression and Interleukin (IL)-1-Induced Activation of IL-8 Transcription by Binding to a Conserved NF-Kappa b-Flanking Sequence Element, J. Biol. Chem., 2001, vol. 276, pp. 4501–4508.

    Article  PubMed  CAS  Google Scholar 

  74. Ravasi, T., Suzuki, H., Cannistraci, C.V., et al., An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man, Cell, 2010, vol. 140, pp. 744–752.

    Article  PubMed  CAS  Google Scholar 

  75. Siggers, T., Chang, A.B., Teixeira, A., et al., Principles of Dimer-Specific Gene Regulation Revealed by a Comprehensive Characterization of NF-KappaB Family DNA Binding, Nat. Immunol., 2011, vol. 13, pp. 95–102.

    Article  PubMed  CAS  Google Scholar 

  76. Grundstrom, S., Anderson, P., Scheipers, P., and Sundstedt, A., Bcl-3 and NFkappaB p50-p50 Homodimers Act As Transcriptional Repressors in Tolerant CD4+ T Cells, J. Biol. Chem., 2004, vol. 279, pp. 8460–8468.

    Article  PubMed  CAS  Google Scholar 

  77. Wang, H., Hertlein, E., Bakkar, N., et al., NF-KappaB Regulation of YY1 Inhibits Skeletal Myogenesis through Transcriptional Silencing of Myofibrillar Genes, Mol. Cell Biol., 2007, vol. 27, pp. 4374–4387.

    Article  PubMed  CAS  Google Scholar 

  78. Kel-Margoulis, O.V., Romashchenko, A.G., Kolchanov, N.A., et al., COMPEL: A Database on Composite Regulatory Elements Providing Combinatorial Transcriptional Regulation, Nucleic Acids Res., 2000, vol. 28, pp. 311–315.

    Article  PubMed  CAS  Google Scholar 

  79. Hess, J., Angel, P., and Schorpp-Kistner, M., AP-1 Subunits: Quarrel and Harmony among Siblings, J. Cell Sci., 2004, vol. 117, pp. 5965–5973.

    Article  PubMed  CAS  Google Scholar 

  80. Diamond, M.I., Miner, J.N., Yoshinaga, S.K., and Yamamoto, K.R., Transcription Factor Interactions: Selectors of Positive or Negative Regulation from a Single DNA Element, Science, 1990, vol. 249, pp. 1266–1272.

    Article  PubMed  CAS  Google Scholar 

  81. Diefenbacher, M., Sekula, S., Heilbock, C., et al., Restriction to Fos Family Members of Trip6-Dependent Coactivation and Glucocorticoid Receptor-Dependent Trans-Repression of Activator Protein-1, Mol. Endocrinol., 2008, vol. 22, pp. 1767–1780.

    Article  PubMed  CAS  Google Scholar 

  82. Ishikawa, M., Yoshitomi, T., Zorumski, C.F., and Izumi, Y., Downregulation of Glutamine Synthetase via GLAST Suppression Induces Retinal Axonal Swelling in a Rat ex vivo Hydrostatic Pressure Model, Invest. Ophthalmol. Vis. Sci., 2011, vol. 52, pp. 6604–6616.

    Article  PubMed  CAS  Google Scholar 

  83. Saitoh, F. and Araki, T., Proteasomal Degradation of Glutamine Synthetase Regulates Schwann Cell Differentiation, J. Neurosci., 2010, vol. 30, pp. 1204–1212.

    Article  PubMed  CAS  Google Scholar 

  84. Abramovitz, L., Shapira, T., Ben-Dror, I., et al., Dual Role of NRSF/REST in Activation and Repression of the Glucocorticoid Response, J. Biol. Chem., 2008, vol. 283, pp. 110–119.

    Article  PubMed  CAS  Google Scholar 

  85. Bulger, M. and Groudine, M., Functional and Mechanistic Diversity of Distal Transcription Enhancers, Cell, 2011, vol. 144, pp. 327–339.

    Article  PubMed  CAS  Google Scholar 

  86. Granner, D.K. and Hargrove, J.L., Regulation of the Synthesis of Tyrosine Aminotransferase: The Relationship to mRNATAT, Mol. Cell Biochem., 1983, vols. 53–54, pp. 113–128.

    PubMed  Google Scholar 

  87. Gadson, P., Jr. and McCoy, J., Differential Expression of Tyrosine Aminotransferase by Glucocorticoids and Insulin, Biochim. Biophys. Acta, 1993, vol. 1173, pp. 22–31.

    Article  PubMed  CAS  Google Scholar 

  88. Ganss, R., Weih, F., and Schutz, G., The Cyclic Adenosine 3′,5′-Monophosphate- and the Glucocorticoid-Dependent Enhancers Are Targets for Insulin Repression of Tyrosine Aminotransferase Gene Transcription, Mol. Endocrinol., 1994, vol. 8, pp. 895–903.

    Article  PubMed  CAS  Google Scholar 

  89. Faust, D.M., Catherin, A.M., Barbaux, S., et al., The Activity of the Highly Inducible Mouse Phenylalanine Hydroxylase Gene Promoter Is Dependent upon a Tissue-Specific, Hormone-Inducible Enhancer, Mol. Cell Biol., 1996, vol. 16, pp. 3125–3137.

    PubMed  CAS  Google Scholar 

  90. Grange, T., Roux, J., Rigaud, G., and Pictet, R., Cell-Type Specific Activity of Two Glucocorticoid Responsive Units of Rat Tyrosine Aminotransferase Gene Is Associated with Multiple Binding Sites for C/EBP and a Novel Liver-Specific Nuclear Factor, Nucleic Acids Res., 1991, vol. 19, pp. 131–139.

    Article  PubMed  CAS  Google Scholar 

  91. Nitsch, D., Boshart, M., and Schutz, G., Activation of the Tyrosine Aminotransferase Gene Is Dependent on Synergy between Liver-Specific and Hormone-Responsive Elements, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, pp. 5479–5483.

    Article  PubMed  CAS  Google Scholar 

  92. Espinas, M.L., Roux, J., Ghysdael, J., et al., Participation of Ets Transcription Factors in the Glucocorticoid Response of the Rat Tyrosine Aminotransferase Gene, Mol. Cell Biol., 1994, vol. 14, pp. 4116–4125.

    PubMed  CAS  Google Scholar 

  93. Roux, J., Pictet, R., and Grange, T., Hepatocyte Nuclear Factor 3 Determines the Amplitude of the Glucocorticoid Response of the Rat Tyrosine Aminotransferase Gene, DNA Cell Biol., 1995, vol. 14, pp. 385–396.

    Article  PubMed  CAS  Google Scholar 

  94. Kropachev, K.Y., Kaledin, V.I., Kobsev, V.F., et al., Involvement of Transcription Factor HNF3 Gamma in the Effect of o-Aminoazotoluene on Glucocorticoid Induction of Tyrosine Aminotransferase in Mice Sensitive to Its Hepatocarcinogen Action, Mol. Carcinog., 2001, vol. 31, pp. 10–15.

    Article  PubMed  CAS  Google Scholar 

  95. Merkulova, T.I., Kropachev, K.Y., Timofeeva, O.A., et al., Species-Specfic Effects of the Hepatocarcinogens 3′-Methyl-4-Dimethyl-Aminoazobenzene and o-Aminoazotoluene in Mouse and Rat Liver, Mol. Carcinog., 2005, vol. 44, pp. 223–232.

    Article  PubMed  CAS  Google Scholar 

  96. Pech, C.M., Tay, T.S., and Yeoh, G.C., 5′ Sequences Direct Developmental Expression and Hormone Responsiveness of Tyrosine Aminotransferase in Primary Cultures of Fetal Rat Hepatocytes, Eur. J. Biochem., 1997, vol. 249, pp. 675–683.

    Article  PubMed  CAS  Google Scholar 

  97. Li, G., Ruan, X., Auerbach, R.K., et al., Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation, Cell, 2012, vol. 148, pp. 84–98.

    Article  PubMed  CAS  Google Scholar 

  98. Levitsky, V.G., Podkolodnaya, O.A., Kolchanov, N.A., and Podkolodny, N.L., Nucleosome Formation Potential of Eukaryotic DNA: Calculation and Promoters Analysis, Bioinformatics, 2001, vol. 17, pp. 998–1010.

    Article  PubMed  CAS  Google Scholar 

  99. Tolkunov, D. and Morozov, A.V., Genomic Studies and Computational Predictions of Nucleosome Positions and Formation Energies, Adv. Protein Chem. Struct. Biol., 2010, vol. 79, pp. 1–57.

    Article  PubMed  CAS  Google Scholar 

  100. Ganapathi, M. and Srivastava, P., Das Sutar, S.K., et al., Comparative Analysis of Chromatin Landscape in Regulatory Regions of Human Housekeeping and Tissue Specific Genes, BMC Bioinforma., 2005, vol. 6, p. 126.

  101. Orlov, Yu.L., Levitskii, V.G., Smirnova, O.G., et al., Statistical Analysis of Nucleosome Formation Sites, Biofizika (Moscow), 2006, vol. 51, pp. 608–614.

    CAS  Google Scholar 

  102. Johnson, R., Teh, C.H., Kunarso, G., et al., REST Regulates Distinct Transcriptional Networks in Embryonic and Neural Stem Cells, PLoS Biol., 2008, vol. 6. e256.

    Article  PubMed  CAS  Google Scholar 

  103. Joseph, R., Orlov, Y.L., Huss, M., et al., Integrative Model of Genomic Factors for Determining Binding Site Selection by Estrogen Receptor-Alpha, Mol. Syst. Biol., 2010, vol. 6, p. 456.

    Article  PubMed  CAS  Google Scholar 

  104. Sanyal, A., Bau, D., Marti-Renom, M.A., and Dekker, J., Chromatin Globules: A Common Motif of Higher Order Chromosome Structure?, Curr. Opin. Cell Biol., 2011, vol. 23, pp. 325–331.

    Article  PubMed  CAS  Google Scholar 

  105. Vaquerizas, J.M., Kummerfeld, S.K., Teichmann, S.A., and Luscombe, N.M., A Census of Human Transcription Factors: Function, Expression and Evolution, Nat. Rev. Genet., 2009, vol. 10, pp. 252–263.

    Article  PubMed  CAS  Google Scholar 

  106. DeLaForest, A., Nagaoka, M. Si-Tayeb, K., et al., HNF4A Is Essential for Specification of Hepatic Progenitors from Human Pluripotent Stem Cells, Development, 2011, vol. 138, pp. 4143–4153.

    Article  PubMed  CAS  Google Scholar 

  107. White, U.A. and Stephens, J.M., Transcriptional Factors That Promote Formation of White Adipose Tissue, Mol. Cell Endocrinol., 2010, vol. 318, pp. 10–14.

    Article  PubMed  CAS  Google Scholar 

  108. Harries, L.W., Brown, J.E., and Gloyn, A.L., Species-Specific Differences in the Expression of the HNF1A, HNF1B and HNF4A Genes, PLoS One, 2009, vol. 4. e7855.

    Article  PubMed  CAS  Google Scholar 

  109. Karin, M. and Hunter, T., Transcriptional Control by Protein Phosphorylation: Signal Transmission from the Cell Surface to the Nucleus, Curr. Biol., 1995, vol. 5, pp. 747–757.

    Article  PubMed  CAS  Google Scholar 

  110. Soutoglou, E., Katrakili, N., and Talianidis, I., Acetylation Regulates Transcription Factor Activity at Multiple Levels, Mol. Cell, 2000, vol. 5, pp. 745–751.

    Article  PubMed  CAS  Google Scholar 

  111. Pless, O., Kowenz-Leutz, E., Dittmar, G., and Leutz, A., A Differential Proteome Screening System for Post-Translational Modification-Dependent Transcription Factor Interactions, Nat. Protoc., 2011, vol. 6, pp. 359–364.

    Article  PubMed  CAS  Google Scholar 

  112. Wang, C., Powell, M., Tian, L., and Pestell, R.G., Analysis of Nuclear Receptor Acetylation, Methods Mol. Biol., 2011, vol. 776, pp. 169–181.

    Article  PubMed  CAS  Google Scholar 

  113. Yokoyama, A., Katsura, S., Ito, R., et al., Multiple Post-Translational Modifications in Hepatocyte Nuclear Factor 4alpha, Biochem. Biophys. Res. Commun., 2011, vol. 410, pp. 749–753.

    Article  PubMed  CAS  Google Scholar 

  114. Viollet, B., Kahn, A., and Raymondjean, M., Protein Kinase A-Dependent Phosphorylation Modulates DNA-Binding Activity of Hepatocyte Nuclear Factor 4, Mol. Cell Biol., 1997, vol. 17, pp. 4208–4219.

    PubMed  CAS  Google Scholar 

  115. Wang, Z., Bishop, E.P., and Burke, P.A., Expression Profile Analysis of the Inflammatory Response Regulated by Hepatocyte Nuclear Factor 4alpha, BMC Genomics, 2011, vol. 12, p. 128.

    Article  PubMed  CAS  Google Scholar 

  116. Roubenoff, R., Molecular Basis of Inflammation: Relationships between Catabolic Cytokines, Hormones, Energy Balance, and Muscle, J. Parenter. Enteral Nutr., 2008, vol. 32, pp. 630–632.

    Article  CAS  Google Scholar 

  117. Hong, Y.H., Varanasi, U.S., Yang, W., and Leff, T., AMP-Activated Protein Kinase Regulates HNF4α Transcriptional Activity by Inhibiting Dimer Formation and Decreasing Protein Stability, J. Biol. Chem., 2003, vol. 278, pp. 27495–27501.

    Article  PubMed  CAS  Google Scholar 

  118. Carling, D., Mayer, F.V., Sanders, M.J., and Gamblin, S.J., AMP-Activated Protein Kinase: Nature’s Energy Sensor, Nat. Chem. Biol., 2010, vol. 7, pp. 512–518.

    Article  CAS  Google Scholar 

  119. Guo, H., Gao, C., Mi, Z., et al., Phosphorylation of Ser158 Regulates Inflammatory Redox-Dependent Hepatocyte Nuclear Factor-4alpha Transcriptional Activity, Biochem. J., 2006, vol. 394, pp. 379–387.

    Article  PubMed  CAS  Google Scholar 

  120. Grigo, K., Wirsing, A., Lucas, B., et al., HNF4 Alpha Orchestrates a Set of 14 Genes to Down-Regulate Cell Proliferation in Kidney Cells, Biol. Chem., 2008, vol. 389, pp. 179–187.

    Article  PubMed  CAS  Google Scholar 

  121. Lu, H., Gonzalez, F.J., and Klaassen, C., Alterations in Hepatic mRNA Expression of Phase II Enzymes and Xenobiotic Transporters after Targeted Disruption of Hepatocyte Nuclear Factor 4 Alpha, Toxicol. Sci., 2010, vol. 118, pp. 380–390.

    Article  PubMed  CAS  Google Scholar 

  122. Hirota, K., Sakamaki, J., Ishida, J., et al., A Combination of HNF-4 and Foxo1 Is Required for Reciprocal Transcriptional Regulation of Glucokinase and Glucose-6-Phosphatase Genes in Response to Fasting and Feeding, J. Biol. Chem., 2008, vol. 283, pp. 32432–32441.

    Article  PubMed  CAS  Google Scholar 

  123. Stoffel, M. and Duncan, S.A., The Maturity-Onset Diabetes of the Young (MODY1) Transcription Factor HNF4alpha Regulates Expression of Genes Required for Glucose Transport and Metabolism, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 13209–13214.

    Article  PubMed  CAS  Google Scholar 

  124. Kolpakov, F.A., Ananko, E.A., Kolesov, G.B., and Kolchanov, N.A., GeneNet: A Gene Network Database and Its Automated Visualization, Bioinformatics, 1998, vol. 14, pp. 529–537.

    Article  PubMed  CAS  Google Scholar 

  125. Gimpl, G., Burger, K., and Fahrenholz, F., A Closer Look at the Cholesterol Sensor, Trends Biochem. Sci., 2002, vol. 27, pp. 596–599.

    Article  PubMed  CAS  Google Scholar 

  126. Yellaturu, C.R., Deng, X., Cagen, L.M., et al., Insulin Enhances Post-Translational Processing of Nascent SREBP-1c by Promoting Its Phosphorylation and Association with COPII Vesicles, J. Biol. Chem., 2009, vol. 284, pp. 7518–7532.

    Article  PubMed  CAS  Google Scholar 

  127. Yokoyama, C., Wang, X., Briggs, M.R., et al., SREBP-1, a Basic-Helix-Loop-Helix-Leucine Zipper Protein That Controls Transcription of the Low Density Lipoprotein Receptor Gene, Cell, 1993, vol. 75, pp. 187–197.

    PubMed  CAS  Google Scholar 

  128. Arito, M., Horiba, T., Hachimura, S., et al., Growth Factor-Induced Phosphorylation of Sterol Regulatory Element-Binding Proteins Inhibits Sumoylation, Thereby Stimulating the Expression of Their Target Genes, Low Density Lipoprotein Uptake, and Lipid Synthesis, J. Biol. Chem., 2008, vol. 283, pp. 15224–15231.

    Article  PubMed  CAS  Google Scholar 

  129. Lu, M. and Shyy, J.Y., Sterol Regulatory Element-Binding Protein 1 Is Negatively Modulated by PKA Phosphorylation, Am. J. Physiol. Cell Physiol., 2006, vol. 290, pp. C1477–C1486.

    Article  PubMed  CAS  Google Scholar 

  130. Hirano, Y., Murata, S., Tanaka, K., et al., Sterol Regulatory Element-Binding Proteins Are Negatively Regulated through SUMO-1 Modification Independent of the Ubiquitin/26 S Proteasome Pathway, J. Biol. Chem., 2003, vol. 278, pp. 16809–16819.

    Article  PubMed  CAS  Google Scholar 

  131. Peterson, T.R., Sengupta, S.S., Harris, T.E., et al., mTOR Complex 1 Regulates Lipin 1 Localization to Control the SREBP Pathway, Cell, 2011, vol. 146, pp. 408–420.

    Article  PubMed  CAS  Google Scholar 

  132. Laplante, M. and Sabatini, D.M., mTORC1 Activates SREBP-1c and Uncouples Lipogenesis from Gluconeogenesis, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 3281–3282.

    Article  PubMed  CAS  Google Scholar 

  133. Lewis, C.A., Griffiths, B., Santos, C.R., et al., Regulation of the SREBP Transcription Factors by mTORC1, Biochem. Soc. Trans., 2011, vol. 39, pp. 495–499.

    Article  PubMed  CAS  Google Scholar 

  134. Ignatieva, E.V., Merkulova, T.I., Vishnevskii, O.V., and Kel’ A.E., Transcriptional Regulation of Lipid Metabolism Genes: Description in the TRDD Database, Mol. Biol. (Moscow), 1997, vol. 31, no. 4, pp. 684–700.

    Google Scholar 

  135. Ignatieva, E.V., Merkulova, T.I., Oshchepkov, D.Yu., et al., Prediction of New SREBP Binding Sites in the Promoter Regions of Vertebrate Genes Using a Combination of a Bioinformatic and an Experimental Approach, VOGiS Herald, 2009, vol. 13, pp. 37–45.

    Google Scholar 

  136. Kolchanov, N.A., Anan’ko, E.A., Kolpakov, F.A., et al., Gene Networks, Mol. Biol. (Moscow), 2000, vol. 34, pp. 533–544.

    Article  CAS  Google Scholar 

  137. Ananko, E.A., Podkolodny, N.L., Stepanenko, I.L., et al., GeneNet in 2005, Nucleic Acids Res., 2005, vol. 33, pp. D425–D427.

    Article  PubMed  CAS  Google Scholar 

  138. Levine, M. and Tjian, R., Transcription Regulation and Animal Diversity, Nature, 2003, vol. 424, pp. 147–151.

    Article  PubMed  CAS  Google Scholar 

  139. Matys, V., Kel-Margoulis, O.V., Fricke, E., et al., TRANSFAC and Its Module TRANSCompel: Transcriptional Gene Regulation in Eukaryotes, Nucleic Acids Res., 2006, vol. 34, pp. D108–D110.

    Article  PubMed  CAS  Google Scholar 

  140. Portales-Casamar, E., Thongjuea, S., Kwon, A.T., et al., JASPAR 2010: The Greatly Expanded Open-Access Database of Transcription Factor Binding Profiles, Nucleic Acids Res., 2010, vol. 38, pp. D105–D110.

    Article  PubMed  CAS  Google Scholar 

  141. Takahashi, K. and Yamanaka, S., Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, 2006, vol. 126, pp. 663–676.

    Article  PubMed  CAS  Google Scholar 

  142. Wernig, M., Meissner, A., Foreman, R., et al., In vitro Reprogramming of Fibroblasts into a Pluripotent ES-Cell-Like State, Nature, 2007, vol. 448, pp. 318–324.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ananko.

Additional information

Original Russian Text © T.I. Merkulova, E.A. Ananko, E.V. Ignatieva, N.A. Kolchanov, 2013, published in Genetika, 2013, Vol. 49, No. 1, pp. 37–54.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merkulova, T.I., Ananko, E.A., Ignatieva, E.V. et al. Transcription regulatory codes of eukaryotic genomes. Russ J Genet 49, 29–45 (2013). https://doi.org/10.1134/S1022795413010079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795413010079

Keywords

Navigation