Skip to main content
Log in

The increase in the proportion of nervous animals bred for catatonia: The participation of central adrenoreceptors in catatonic reactions

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Using a large amount of breeding material, the idea of D.K. Belyaev on the role of selection in the appearance of new behavioral and neuronal forms was confirmed. Experiments were performed using rats of the GC (genetics + catatonia) strain, which are prone to passive defensive reactions of cataleptic freezing. At the current breeding stage, elevation of the proportion of so-called “nervous” animals was demonstrated, both with respect to the expression of such reactions and their frequency. At this breeding stage, in the brains of GC rats, the mRNA levels of α1A- and α2A-adrenoreceptor genes were determined. A decrease of α1A-adrenoreceptor gene expression in the midbrain and medulla oblongata, along with elevation of α2A-adreno-receptor gene expression in the frontal cortex was observed. It was suggested that changes in the expression of α-adrenoreceptor genes could be caused by an increase in the proportion of nervous animals and could contribute to the akinetic behavioral component in GC rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Belyaev, D.K., Genetics and the Problems of Animal Breeding, Genetika (Moscow), 1966, no. 10, pp. 38–48.

  2. Gallup, G.G. and Maser, J.D., Tonic Immobility: Evolutionary Underpinnings of Human Catalepsy and Catatonia, Psychopathology: Experimental Models, Seligman, M.E.P., Ed., New York: Freeman, 1977, pp. 334–357.

    Google Scholar 

  3. Kolpakov, V.G., Parvez, S.H., and Barykina, N.N., A Tentative Evolutionary Biological Approach to the Problems of Schizophrenia, Biog. Amines, 1986, vol. 3, no. 4, pp. 299–319.

    Google Scholar 

  4. Moskowitz, A.K., “Scared Stiff”: Catatonia as an Evolutionary-Based Fear Response, Psychol. Rev., 2004, vol. 111, no. 4, pp. 984–1002.

    Article  PubMed  Google Scholar 

  5. Barykina, N.N., Chepkasov, I.L., Alekhina, T.A., and Kolpakov, V.G., Selection of Wistar Rats for Predisposition to Catatonia, Genetika (Moscow), 1983, vol. 19, no. 12, pp. 2014–2021.

    CAS  Google Scholar 

  6. Kolpakov, V.G., Barykina, N.N., Chugui, V.F., and Alekhina, T.A., Relationships between Some Forms of Catalepsy in Rats: An Attempt of Genetic Analysis, Russ. J. Genet., 1999, vol. 35, no. 6, pp. 685–688.

    CAS  Google Scholar 

  7. Barykina, N.N., Alekhina, T.A., Chugui, V.F., et al., Bipolar Manifestation of Cataleptic Reactions in Rats, Russ. J. Genet., 2004, vol. 40, no. 5, pp. 485–499.

    Article  CAS  Google Scholar 

  8. Alekhina, T.A., Prokudina, O.I., Chugui, V.F., et al., Dual Manifestation of Cataleptic Reactions in Rats, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2005, vol. 55, no. 4, pp. 536–542.

    CAS  Google Scholar 

  9. Blizard, D.A., Freedman, L.S., and Liang, B., Genetic Variation, Chronic Stress, and the Central and Peripheral Noradrenergic Systems, Am. J. Physiol., 1983, vol. 245, no. 4, pp. 600–605.

    Google Scholar 

  10. Guimaraes, S. and Moura, D., Vascular Adrenoreceptors: An Update, http://www.ncbi.nlm.nih.gov/pubmed/11356987. Rev., 2001, vol. 53, pp. 319–356.

    CAS  Google Scholar 

  11. Ramos, B.P. and Arnsten, F.T., Adrenergic Pharmacology and Cognition: Focus on the Prefrontal Cortex, Pharmacol. Ther., 2007, vol. 113, pp. 523–536.

    Article  PubMed  CAS  Google Scholar 

  12. Alekhina, T.A., Gilinski, M.A., and Kolpakov, V.G., Catecholamines Level in the Brain of Rats with a Genetic Predisposition to Catatonia, Biog. Amines, 1994, vol. 10, no. 5, pp. 443–449.

    CAS  Google Scholar 

  13. Fedoseeva, L.A., Ryazanova, M.A., Dymshits, G.M., and Markel, A.L., Gene Expression for the Renin System in the Myocardium of Hypertensive ISIAH Rats, Byull. Eksp. Biol. Med., 2009, vol. 148, no. 10, pp. 430–433.

    Google Scholar 

  14. Barykina, N.N., Chugui, V.F., Alekhina, T.A., et al., Learning in Rats Predisposed to Catatonic States in a Morris Water Maze, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2009, vol. 59, no. 6, pp. 728–735.

    CAS  Google Scholar 

  15. Petrova, E.V., Change of Congenital and Acquired Forms of Behavior in Rats with Genetic Catalepsy, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1990, vol. 40, no. 3, pp. 475–480.

    CAS  Google Scholar 

  16. Kulikov, A.V., Tikhonova, M.A., Chugui, V.F., et al., Chronic Administration of Imipramine Decreases Freezing Time in Rats Genetically Predisposed to Catalepsy, Byull. Eksp. Biol. Med., 2004, vol. 138, no. 10, pp. 450–453.

    Article  Google Scholar 

  17. Amstislavskii, S.Ya., Bulygina, V.V., Maslova, L.N., et al., Effects of Cross-Rearing on the Occurrence of Some Physiological and Behavioral Signs in Rats of Wistar and GC Strains, Ross. Fiziol. Zh., 2000, vol. 86, no. 12, pp. 1630–1637.

    Google Scholar 

  18. Alekhina, T.A., Ukolova, T.N., Kuznetsova, N.V., et al., Effect of Imipramine on Nerve Excitability in GC Rats, Byull. Eksp. Biol. Med., 2009, vol. 147, no. 6, pp. 663–666.

    Article  Google Scholar 

  19. Stone, E.A., Zhang, Y., Rosengarten, H., et al., Brain Alpha 1-Adrenergic Neurotransmission Is Necessary for Behavioral Activation to Environmental Change in Mice, Neuroscince, 1999, vol. 94, no. 4, pp. 1245–1252.

    Article  CAS  Google Scholar 

  20. Stone, E.A., Lin, Y., and Quartermain, D., Immobility from Administration of the Alpha1-Adrenergic Antagonist, Terazosin, in the IVth Ventricle in Rats, http://www.ncbi.nlm.nih.gov/pubmed/14665423, Lett. 2003, vol. 353, pp. 231–233.

    CAS  Google Scholar 

  21. Stone, E.A., Grunewald, G.L., Lin, Y., et al., Role of Epinephrine Stimulation of CNS Alha1-Adrenoceptors in Motor Activity in Mice, Synapse, 2003, vol. 49, pp. 67–76.

    Article  PubMed  CAS  Google Scholar 

  22. Bucheler, M.M., Hadamek, K., and Hein, L., Two Alpha(2)-Adrenergic Receptor Subtypes, Alpha(2A) and Alpha(2C), Inhibit Transmitter Release in the Brain of Gene-Targeted Mice, Neuroscience, 2002, vol. 109, pp. 819–826.

    Article  PubMed  CAS  Google Scholar 

  23. Holm, K.J. and Markham, A., Mirtazapine: A Review of Its Use in Major Depression, Drugs, 1999, vol. 57, no. 4, pp. 607–631.

    Article  PubMed  CAS  Google Scholar 

  24. Gurguis, G.N., Vitton, B.J., and Uhde, T.W., Behavioral Sympathetic and Adrenocortical Responses to Yohimbine in Panic Disorder Patient and Normal Controls, Psychiatry Res., 1997, vol. 71, no. 1, pp. 27–39.

    Article  PubMed  CAS  Google Scholar 

  25. Nikulina, E.M., Popova, N.K., Kolpakov, V.G., and Alekhina, T.A., Brain Dopaminergic System in Rats with a Genetic Predisposition to Catalepsy, Biog. Amines, 1987, vol. 4, pp. 399–406.

    CAS  Google Scholar 

  26. Pavlov, I.F., Alekhina, T.A., Barykina, N.N., and Kolpakov, V.G., Genetic Catalepsy and Ultralow Dose Antibodies to S-100B Antigen, Byull. Eksp. Biol. Med., 2008, vol. 146, no. 12, pp. 679–681.

    Google Scholar 

  27. Shishkina, G.T., Kalinina, T.S., Masnavieva, L.B., and Dygalo, N.N., Cortical Alpha-2a Adrenoreceptors Involved in the Inhibitory Control of Motor Activity in Neonatal Rats, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2003, vol. 53, no. 5, pp. 637–640.

    CAS  Google Scholar 

  28. Robinson, E.S., Nutt, D.J., Jakson, H.C., and Hudson, A.L., Behavioral and Physiological Effects Induced by an Infusion of Antisense to the Alpha(2D)-Adrenoceptor in the Rat, Br. J. Pharmacol., 2000, vol. 130, pp. 153–159.

    Article  PubMed  CAS  Google Scholar 

  29. Anden, N.E., Pauksens, K., and Svensson, K., Selective Blockade of Brain Alpha2-Autoreceptors by Yohimbine: Effects on Motor Activity and on Turnover of Noradrenaline and Dopamine, J. Neural. Transm., 1982, vol. 55, pp. 111–120.

    Article  PubMed  CAS  Google Scholar 

  30. Kleven, M.S., Assie, M.B., Cosi, C., et al., Anticataleptic Properties of Alpha2 Adrenergic Antagonists in the Crossed Leg Position and Bar Tests: Differential Mediation by 5-HT1A Receptor Activation, Psychopharmacology, 2005, vol. 177, no. 4, pp. 373–380.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Alekhina.

Additional information

Original Russian Text © M.Ya. Ryazanova, T.N. Igonina, T.A. Alekhina, O.I. Prokudina, 2012, published in Genetika, 2012, Vol. 48, No. 11, pp. 1328–1335.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryazanova, M.A., Igonina, T.N., Alekhina, T.A. et al. The increase in the proportion of nervous animals bred for catatonia: The participation of central adrenoreceptors in catatonic reactions. Russ J Genet 48, 1141–1147 (2012). https://doi.org/10.1134/S1022795412100092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795412100092

Keywords