Skip to main content
Log in

Recent progress of salinity tolerance research in plants

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This paper reviews the most recent research progress in the field of salt tolerance for plants such as Arabidopsis, tomato, wheat, rice and cotton. Salinity tolerance is defined and classified, and research advances in the physiology, cellular biology and molecular biology of salt tolerance are presented. Additionally, transgenic breeding advances are profiled and the studies on quantitative trait locus are given; finally, an outlook for future salinity resistance research is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, S.W. and Tanag, Z.C., Plants Physiology and Molecular Biology, Beijing: Science Press, 1998.

    Google Scholar 

  2. Zhu, J.K., Plant Salt Tolerance, Trends Plant Sci., 2001, vol. 2, no. 6, pp. 66–71.

    Article  Google Scholar 

  3. Cuartero, J., Bolarin, M.C., Asins, M.J., and Moreno, V., Increasing Salt Tolerance in Tomato, J. Exp. Bot., 2006, vol. 57, pp. 1045–1058.

    Article  PubMed  CAS  Google Scholar 

  4. Pan, R., Wang, X.J., and Li, N.H., Plant Physiology, Beijing: Higher Education Press, 2008.

    Google Scholar 

  5. Katerji, N., Hoorn, J.W., Hamdy, A., and Mastrorilli, M., Salinity Effect on Crop Development and Yield, Analysis of Salt Tolerance According to Several Classification Methods, Agric. Water Manage., 2003, vol. 62, pp. 37–66.

    Article  Google Scholar 

  6. Chen, J.M., Research Advance in the Tolerance of Plant to Salt, Jiangsu, J. Agric. Sci., 2006, vol. 34, no. 14, pp. 248–254.

    Google Scholar 

  7. Jiang, Y., Lü, Y.J., and Zhu, S.J., Advance in Studies of the Mechanism of Salt Tolerance and Controlling of Salt Damage in Upland Cotton, Cott. Sci., 2006, vol. 18, no. 4, pp. 248–254.

    Google Scholar 

  8. Wang, W., Pan, Z.J., and Pan, Q.B., Studying Progress in Salt-Tolerant Characters of Crops, Acta Agric. Jiangxi, 2009, vol. 21, no. 2, pp. 30–33.

    Google Scholar 

  9. James, R.A., Munns, R., von Caemmere, S., et al., Photosynthetic Capacity is Related to the Cellular and Subcellular Partitioning of Na+, K+, and Cl in Salt-Affected Barley and Durum Wheat, Plant Cell Environ., 2006, vol. 29, pp. 2185–2197.

    Article  PubMed  CAS  Google Scholar 

  10. Müller, I.S., Gilliham, M., Jha, D., and Mayo, G.M., Shoot Na+ Exclusion and Increased Salinity Tolerance Engineered by Cell Type-Specific Alteration of Na+ Transport in Arabidopsis, Plant Cell, 2009, vol. 21, pp. 2163–2178.

    Article  Google Scholar 

  11. Tûrkana, I. and Demiral, T., Recent Developments in Understanding Salinity Tolerance, Environ. Exp. Bot., 2009, vol. 67, no. 1, pp. 2–9.

    Article  Google Scholar 

  12. Hoekstra, F.A., Golovina, E.A., and Buitink, J., Mechanisms of Plant Desiccation Tolerance, Trends Plant Sci., 2001, vol. 6, pp. 431–443.

    Article  PubMed  CAS  Google Scholar 

  13. Sun, J.C. and Wang, X.C., Studies in Genetic Engineering on Salt Resistance in Rice, J. Ningxia Agric. For. Sci. Technol., 2007, vol. 4, pp. 40–42.

    Google Scholar 

  14. Turchetto-Zolet, A.C., Margis-Pinheiro, M., and Margis, R., The Evolution of Pyrroline-5-Carboxylate Synthase in Plants: A Key Enzyme in Proline Synthesis, Mol. Genet. Genomics, 2009, vol. 281, pp. 87–97.

    Article  PubMed  CAS  Google Scholar 

  15. Liu, F.H., Guo, Y., Gu, D.M., et al., Salt Tolerance of Transgenic Plants with BADH cDNA, Acta Gene Sin., 1997, vol. 27, no. 2, pp. 151–155.

    Google Scholar 

  16. Valentina, M., Theodoulou, F.L., Guy, K., et al., Coordinate Induction of Glutathione Biosynthesis and Glutathione Metabolizing Enzymes is Correlated with Salt Tolerance in Tomato, FEBS Lett., 2003, vol. 554, pp. 417–421.

    Article  Google Scholar 

  17. Salekdeh, G.H., Siopongco, J., Wade, L.J., et al., A Proteomic Approach to Analyzing Drought- and Salt-Responsiveness in Rice, Field Crops Res., 2002, vol. 76, pp. 199–219.

    Article  Google Scholar 

  18. Achard, P., Cheng, H., Grauwe, L.D., et al., Integration of Plant Responses to Environmentally Activated Phytohormonal Signals, Science, 2006, vol. 311, pp. 91–94.

    Article  PubMed  CAS  Google Scholar 

  19. Wang, H., Liang, X., Wanm, Q., et al., Ethylene and Nitric Oxide Are Involved in Maintaining Ion Homeostasis in Arabidopsis Callus under Salt Stress, Planta, 2009, vol. 230, pp. 293–307.

    Article  PubMed  CAS  Google Scholar 

  20. Yang, L., Zu, Y.G., and Tang, Z.H., Ethylene Improves Arabidopsis Salt Tolerance Mainly via Retaining K+ in Shoots and Roots rather than Decreasing Tissue Na+ Content, Environ. Exp. Bot., 2010, doi:10.1016/j.envexpbot.2010.08.006.

  21. Xin, C.S., Dong, H.Z., Tang, W., and Wen, S.M., Physiological and Molecular Mechanisms of Salt Injury and Salt Tolerance in Cotton, Acta Gossypii Sin., 2005, vol. 17, no. 5, pp. 309–313.

    Google Scholar 

  22. Lin, H.X., Yanagihara, S., Zhuang, J.Y., et al., Identification of QTL for Salt Tolerance in Rice via Molecular Markers, Chin. J. Rice Sci., 1998, vol. 12, no. 2, pp. 72–78.

    Google Scholar 

  23. Lin, H.X., Zhu, M.Z., Yano, M., et al., QTLs for Na+ and K+ Uptake of the Shoots and Roots Controlling Rice Salt Tolerance, Theor. Appl. Genet., 2004, vol. 108, pp. 253–260.

    Article  PubMed  CAS  Google Scholar 

  24. Gao, J.P. and Lin, H.X., A Significant Progress of Salt Resistance in Rice—the Salt Resistant QTL SKC1, Chin. Bull. Life Sci., 2005, vol. 17, no. 6, pp. 563–565.

    Google Scholar 

  25. Wang, B., Lan, T., and Wu, W.R., Mapping of QTLs for Na+ Content in Rice Seedlings under Salt Stress, Chin. J. Rice Sci., 2007, vol. 21, no. 6, pp. 585–590.

    CAS  Google Scholar 

  26. Yao, M.Z., Wang, J.F., Chen, H.Y., et al., Inheritance and QTL Mapping of Salt Tolerance in Rice, Rice Sci., 2005, vol. 12, no. 1, pp. 25–32.

    Google Scholar 

  27. Wu, Y.R., Yi, K.K., and Zhu, J.M., Selection for Salt Tolerance of Tomato Population on the Analysis of Phenotype Parameter, J. Zhejiang Univ. Agric. Life Sci., 1999, vol. 25, no. 6, pp. 645–649.

    Google Scholar 

  28. Gao, X.L. and Xiao, Q.M., The NO3-N Contents of Causing Physiological Barriers of Tomato in Sunlight Greenhouse, Liaoning Agric. Sci., 1997, vol. 1, pp. 8–13.

    Google Scholar 

  29. Foolad, M.R., Recent Advances in Genetics of Salt Tolerance in Tomato, Plant Cell, Tissue Organ Cult., 2004, vol. 76, no. 2, pp. 101–119.

    Article  CAS  Google Scholar 

  30. Dadshani, S.A.W., Weidner, A., Buck-Sorlin, G.H., et al., QTL Analysis for Salt Tolerance in Barley, Deutsoher Tropentag, 2004, pp. 5–7.

  31. Zhu, Z.H., Hu, R.H., and Song, J.Z., Effects on the Seedlings of Different Kinds of Wheat with Salt Treatment, J. Nat. Resour., 1996, vol. 4, pp. 25–29.

    Google Scholar 

  32. Wu, Y.Q., Liu, L.X., and Guo, H.J., Mapping QTL for Salt Tolerant Traits in Wheat, J. Nucl. Agr. Sci., 2007, vol. 21, no. 6, pp. 545–549.

    Google Scholar 

  33. Ren, Z.H., Zheng, Z.M., Chinnusamy, V., et al., RAS1, a Quantitative Trait Locus for Salt Tolerance and ABA Sensitivity in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 12, pp. 5669–5674.

    Article  PubMed  CAS  Google Scholar 

  34. Luo, Q.Y., Yu, B.J., Liu, Y.L., et al., The Mixed Inheritance Analysis of Salt Resistance in Cultivars of Glycine max, Soybean Sci., 2004, vol. 23, no. 4, pp. 239–244.

    Google Scholar 

  35. Shi, H.Z., Ishitani, M., Kim, C., and Zhu, J.K., The Arabidopsis thaliana Salt Tolerance Gene SOS1 Encodes a Putative Na+/H+ Antiporter, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 12, pp. 6896–6901.

    Article  PubMed  CAS  Google Scholar 

  36. Liu, J.P., Ishitani, M., Halfter, U., et al., The Arabidopsis thaliana SOS2 Gene Encodes a Protein Kinase That Is Required for Salt Tolerance, Proc. Natl. Acad. Sci. U.S.A., 2000 vol. 97, no. 7, pp. 3730–3734.

    Article  PubMed  CAS  Google Scholar 

  37. Berthomieu, P., Conjro, G., Nublat, A., et al., Functional Analysis of AtHKT1 in Arabidopsis Shows That Na+ Recirculation by the Phloem Is Crucial for Salt Tolerance, EMBO J., 2003, vol. 22, no. 9, pp. 2004–2014.

    Article  PubMed  CAS  Google Scholar 

  38. Liu, Z.L., Huang, C.L., Zhang, X.H., and Wu, Z.Y., Application of Trehalose and the Study Progress of Trehalose Synthase Gene TPS in Transgenic Plants, Chin. Agric. Sci. Bull., 2009, vol. 25, no. 6, pp. 54–58.

    CAS  Google Scholar 

  39. Gaxiola, R.A., Li, J.S., Undurraga, S., et al., Drought- and Salt-Tolerant Plants Result from Over-Expression of the AVP1 H+-Pump, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 11444–11449.

    Article  PubMed  CAS  Google Scholar 

  40. Choi, W., Baek, D., Oh, D.H., et al., NKS1, Na+- and K+-Sensitive 1, Regulates Ion Homeostasis in an SOS — Independent Pathway in Arabidopsis, Phytochemistry, 2011, vol. 72, pp. 330–336.

    Article  PubMed  CAS  Google Scholar 

  41. Liu, C.F., Zou, J., and Chen, X.B., Advances in DREB Transcription Factors and Plant Abiotic Stress Tolerance, Biotechnol. Bull., 2010, vol. 10, pp. 26–30.

    Google Scholar 

  42. Lu, S.Y., Zhao, G.R., Wu, A.M., et al., Molecular Cloning of a Cotton Phosphatase Gene and Its Functional Characterization, Biokhimiya (Moscow), 2010, vol. 75, no. 1, pp. 85–94.

    Article  CAS  Google Scholar 

  43. Wu, C.A., Yang, G.D., Meng, Q.W., and Zheng, C.C., The Cotton GhNHX1 Gene Encoding a Novel Putative Tonoplast Na+/H+ Antiporter Plays an Important Role in Salt Stress, Plant Cell Physiol., 2004, vol. 45, no. 5, pp. 600–607.

    Article  PubMed  CAS  Google Scholar 

  44. Fukuda, A., Nakamura, A., Tagiri, A., et al., Function, Intracellular Localization and the Importance in Salt Tolerance of a Vacuolar Na+/H+ Antiporter from Rice, Plant Cell Physiol., 2004, vol. 45, pp. 146–159.

    Article  PubMed  CAS  Google Scholar 

  45. Ren, Z.H., Gao, J.P., Li, L.G., et al., A Rice Quantitative Trait Locus for Salt Tolerance Encodes a Sodium Transporter, Nat. Genet., 2005, vol. 37, pp. 1141–1146.

    Article  PubMed  CAS  Google Scholar 

  46. Motohashi, T., Nagamiya, K.J., Prodhan, S.H., et al., Production of Salt Stress Tolerant Rice by Overexpression of the Catalase Gene, KatE, Derived from Escherichia coli AsPac, J. Mol. Biol. Biotechnol., 2010, vol. 18, no. 1, pp. 37–41.

    Google Scholar 

  47. Mukhopadhyay, M., Vij, S., and Tyagi, A.K., Overexpression of a Zinc-Finger Protein Gene from Rice Confers Tolerance to Cold, Dehydration, and Salt Stress in Transgenic Tobacco, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 16, pp. 6309–6314.

    Article  PubMed  CAS  Google Scholar 

  48. Zhao, F.Y., Guo, S.L., Zhang, H., and Zhao, Y.X., Expression of Yeast SOD2 in Transgenic Rice Results in Increased Salt Tolerance, Plant Sci., 2006, vol. 170, pp. 216–224.

    Article  CAS  Google Scholar 

  49. Shi, L., Gan, X.Y., Chen, Y.C., et al., Cloning and Sequence Analysis of Betaine Aldehyde Dehydrogenase Gene from Haloxylon ammodendron, Acta Bot. Bor.-Occid. Sin., 2010, vol. 30, no. 2, pp. 223–228.

    CAS  Google Scholar 

  50. Wegner, L.H. and Raschke, K., Ion Channels in the Xylem Parenchyma of Barley Roots—a Procedure to Isolate Protoplasts from This Tissue and a Patch-Clamp Exploration of Salt Passageways into Xylem Vessels, Plant Physiol., 1994, vol. 105, pp. 799–813.

    PubMed  CAS  Google Scholar 

  51. Wang, J., Zuo, K., and Wu, W., Expression of a Novel Antiporter Gene from Brassica napus Resulted in Enhanced Salt Tolerance in Transgenic Tobacco Plants, Biol. Plantarum, 2004, vol. 48, pp. 509–515.

    Article  CAS  Google Scholar 

  52. Zhang, Q.X., Xu, X.F., and Wang, Y., Isolation and Preliminary Function Analysis of a Na+/H+ Antiporter Gene from Malus zumi, Afr. J. Biotechnol., 2009, vol. 8, pp. 4774–4781.

    CAS  Google Scholar 

  53. Dong, Y.Z., Construction of Vector with IMT1 and Its Gene Expression in Transgenic Tobacco Leaf Cells Associated with Salt Tolerance, Acta Bot. Sin., 1999, vol. 41, no. 2, pp. 146–149.

    Article  CAS  Google Scholar 

  54. Zong, Z.W. and Yang, X., Effect of mtlD Expression on Peanut Salt Tolerance, J. Anhui Agric. Sci., 2010, vol. 38, no. 20, pp. 10606–10607.

    Google Scholar 

  55. Takahashi, R., Liu, S.K., and Takano, T., Cloning and Functional Comparison of a High-Affinity K+ Transporter Gene Phahkt1 of Salt-Tolerant and Salt-Sensitive Reed Plants, J. Exp. Bot., 2007, vol. 58, nos. 15–16, pp. 4387–4395.

    Article  PubMed  CAS  Google Scholar 

  56. Yin, Y.L., Liang, J.S., and Liu, Q.Q., Cloning of HAL1 Gene from Saccharomyces cerevisiae and Construction of Its Plant Expression Vector, J. Yangzhou Univ. Agric. Life Sci., 2002, vol. 4, no. 23, pp. 27–29.

    Google Scholar 

  57. Shi, H.Z., Lee, B., Wu, S.J., and Zhu, J.K., Over-Expression of a Plasma Membrane Na+/H+ Antiporter Gene Improves Salt Tolerance in Arabidopsis thaliana, Nat. Biotechnol., 2003, vol. 21, pp. 81–85.

    Article  PubMed  CAS  Google Scholar 

  58. Wang, L.Y., Ding, G.H., and Li, L., Progress in Synthesis and Metabolism of Proline, J. Harbin Normal. Univ. Nat Sci., 2010, vol. 26, no. 2, pp. 84–89.

    Google Scholar 

  59. Cai, X.N., Yang, P., Fen, A.L., et al., Cloning of ThHKT1 Gene from Thellungiella halophile, Jiangsu J. Agric. Sci., 2006, vol. 6, pp. 21–24.

    Google Scholar 

  60. Duan, X.G., Yang, A.F., Gao, F., et al., Heterologous Expression of Vacuolar H+-PPase Enhances the Electrochemical Gradient Across the Vacuolar Membrane and Improves Tobacco Cell Salt Tolerance, Protoplasma, 2007, vol. 232, pp. 87–95.

    Article  PubMed  CAS  Google Scholar 

  61. Tang, R., Li, C., and Xu, K., Isolation, Functional Characterization and Expression Pattern of a Vacuolar Na+/H+ Antiporter Gene Trnhx1 from Trifolium repens L., Plant Mol. Biol. Rep., 2010, vol. 28, pp. 102–111.

    Article  CAS  Google Scholar 

  62. Li, J.Y., Jiang, G.Q., Huang, P., et al., Over Expression of the Na+/H+ Antiporter Gene from Suaeda salsa Confers Cold and Salt Tolerance to Transgenic Arabidopsis thaliana, Plant Cell Tissue Organ Cult., 2007, vol. 90, pp. 41–48.

    Article  CAS  Google Scholar 

  63. Koh, E.J., Song, W.Y., Lee, Y., et al., Expression of Yeast Cadmium Factor 1 (YCF1) Confers Salt Tolerance to Arabidopsis thaliana, Plant Sci., 2006, vol. 170, pp. 534–541.

    Article  CAS  Google Scholar 

  64. Sheng, F.F., Yu, Y.J., and Yin, C.Q., Studies on Introducing Salt Resistance DNA of Dogbane into Cotton, Cott. Sci., 1995, vol. 7, no. 1, pp. 18–21.

    Google Scholar 

  65. Yu, Y.J., Variation of Characters in Upland Cotton (G. hirsutum) after Introduction by Exogenous DNA from Other Families, J. Shandong Agric. Univ. Nat. Sci., 1991, vol. 22, no. 4, pp. 335–340.

    Google Scholar 

  66. Li, N.Y. and Guo, Z.J., Over-Expression of Two Different Transcription Factors, OPBP1 and OsiWRKY, Enhances Resistance against Pathogen Attack and Salt Stress in Rice, Chin. J. Rice Sci., 2006, vol. 20, no. 1, pp. 13–18.

    Google Scholar 

  67. Martinez-Rodriguez, M.M., Estan, M.T., Moyano, E., et al., The Effectiveness of Grafting to Improve Salt Tolerance in Tomato When an ‘Excluder’ Genotype is Used as Scion. Environ. Exp. Bot., 2008, vol. 63, pp. 392–401.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wang.

Additional information

The article is published in the original.

S. Yu and W. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, S., Wang, W. & Wang, B. Recent progress of salinity tolerance research in plants. Russ J Genet 48, 497–505 (2012). https://doi.org/10.1134/S1022795412050225

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795412050225

Keywords

Navigation