Advertisement

Russian Journal of Genetics

, Volume 48, Issue 3, pp 249–260 | Cite as

Mosaic patterns of transgene expression in plants

  • T. V. Marenkova
  • D. B. Loginova
  • E. V. Deineko
Reviews and Theoretical Articles

Abstract

The review describes the phenomenon of mosaic transgene (gene) expression in plants. Parallels with the mosaic transgene (gene) expression in other organisms are presented. Parallels with the mosaic patterns of gene (transgene) expression in other organisms (Drosophila, transgenic animals, and others) are made.

Keywords

Transgenic Plant Transcriptional Silence Mosaic Pattern uidA Gene Heterochromatin Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matzke, M., Primig, M., Trnovsky, J., and Matzke, A., Reversible Methylation and Inactivation of Marker Genes in Sequentially Transformed Plants, EMBO J., 1989, vol. 8, pp. 643–649.PubMedGoogle Scholar
  2. 2.
    Napoli, C., Lemieux, C., and Jorgensen, R., Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in Trans, Plant Cell, 1990, vol. 2, pp. 279–289.PubMedCrossRefGoogle Scholar
  3. 3.
    van der Krol, A.R., Mur, L.A., Beld, M., et al., Flavonoid Genes in Petunia: Addition of a Limited Number of Gene Copies May Lead to a Suppression of Gene Expression, Plant Cell, 1990, vol. 2, pp. 291–299.PubMedCrossRefGoogle Scholar
  4. 4.
    Dorokhov, Yu.L., Gene Silencing in Plants, Mol. Biol., 2007, vol. 41, no. 4, pp. 579–592.CrossRefGoogle Scholar
  5. 5.
    Marenkova, T.V. and Deineko, E.V., Transcriptional Gene Silencing in Plants, Russ. J. Genet., 2010, vol. 46, no. 5, pp. 511–520.CrossRefGoogle Scholar
  6. 6.
    Flavell, R.B., Inactivation of Gene Expression in Plants as a Consequence of Specific Sequence Duplication, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 3490–3496.PubMedCrossRefGoogle Scholar
  7. 7.
    Matzke, M., Kanno, T., Daxinger, L., et al., RNA-Mediated Chromatin-Based Silencing in Plants, Curr. Opin. Cell Biol., 2009, vol. 21, pp. 367–376.PubMedCrossRefGoogle Scholar
  8. 8.
    Chinnusamy, V. and Zhu, J.K., RNA-Directed DNA Methylation and Demethylation in Plants, Sci. China C Life Sci., 2009, vol. 52, pp. 331–343.PubMedCrossRefGoogle Scholar
  9. 9.
    Wierzbicki, A., Haag, J.R., and Pikaard, C.S., Noncoding Transcription by RNA Polymerase Pol IVb/Pol V Mediates Transcriptional Silencing of Overlapping and Adjacent Genes, Cell, 2008, vol. 135, pp. 635–648.PubMedCrossRefGoogle Scholar
  10. 10.
    Pikaard, C.S., Haag, J.R., Ream, T., and Wierzbicki, A.T., Roles of RNA Polymerase IV in Gene Silencing, Trends Plant Sci., 2008, vol. 13, pp. 390–397.PubMedCrossRefGoogle Scholar
  11. 11.
    Li, C.F., Henderson, I.R., Song, L., et al., Dynamic Regulation of ARGONAUTE4 within Multiple Nuclear Bodies in Arabidopsis thaliana, PLoS Genet., 2008, vol. 4. e27.Google Scholar
  12. 12.
    Jinek, M. and Doudna, J.A., A Three-Dimensional View of the Molecular Machinery of RNA Interference, Nature, 2009, vol. 457, pp. 405–412.PubMedCrossRefGoogle Scholar
  13. 13.
    Eamens, A., Wang, M.B., Smith, N.A., and Waterhouse, P.M., RNA Silencing in Plants: Yesterday, Today, and Tomorrow, Plant Physiol., 2008, vol. 147, pp. 456–468.PubMedCrossRefGoogle Scholar
  14. 14.
    Vaucheret, H., Post-Transcriptional Small RNA Pathways in Plants: Mechanisms and Regulations, Genes Dev., 2006, vol. 20, pp. 759–771.PubMedCrossRefGoogle Scholar
  15. 15.
    Dolgosheina, E.V., Morin, R.D., Aksay, G., et al., Conifers Have a Unique Small RNA Silencing Signature, RNA, 2008, vol. 14, pp. 1508–1515.PubMedCrossRefGoogle Scholar
  16. 16.
    Marenkova (Novoselia), T.V., Deineko, E.V., and Shumny, V.K., Mosaic Expression Pattern of the nptII Gene in Transgenic Tobacco Plants Nu 21, Russ. J. Genet., 2007, vol. 43, no. 7, pp. 780–790.CrossRefGoogle Scholar
  17. 17.
    Morino, K., Olsen, O.A., and Shimamoto, K., Silencing of an Aleurone-Specific Gene in Transgenic Rice Is Caused by a Rearranged Transgene, Plant J., 1999, vol. 17, pp. 275–285.PubMedCrossRefGoogle Scholar
  18. 18.
    Day, C.D., Lee, E., Kobayashi, J., et al., Transgene Integration into the Same Chromosome Location Can Produce Alleles That Express at a Predictable Level, or Alleles That Are Differentially Silenced, Genes Dev., 2000, vol. 14, pp. 2869–2880.PubMedCrossRefGoogle Scholar
  19. 19.
    Bastar, M.T., Luthar, Z., Skof, S., and Bohanec, B., Quantitative Determination of Mosaic GFP Gene Expression in Tobacco, Plant Cell Rep., 2004, vol. 22, pp. 939–944.PubMedCrossRefGoogle Scholar
  20. 20.
    Linn, F., Heidmann, I., Saedler, H., and Meyer, P., Epigenetic Changes in the Expression of the Maize A1 Gene in Petunia hybrida: Role of Numbers of Integrated Copies and State of Methylation, Mol. Gen. Genet., 1990, vol. 222, pp. 329–336.PubMedCrossRefGoogle Scholar
  21. 21.
    Schmulling, T. and Rohrig, H., Gene Silencing in Transgenic Tobacco Hybrids: Frequency of the Event and Visualization of Somatic Inactivation Pattern, Mol. Gen. Genet., 1995, vol. 249, pp. 375–390.PubMedCrossRefGoogle Scholar
  22. 22.
    Mannerlof, M. and Tenning, P., Variability of Gene Expression in Transgenic Tobacco, Euphytica, 1997, vol. 98, pp. 133–139.CrossRefGoogle Scholar
  23. 23.
    Pret`ova, A., Obert, B., and Wetzstein, H.Y., Leaf Developmental Stage and Tissue Location Affect the Detection of β-Glucuronidase in Transgenic Tobacco Plants, Biotechnol. Lett., 2001, vol. 23, pp. 555–558.CrossRefGoogle Scholar
  24. 24.
    Halfhill, M.D., Millwood, R.J., Rufty, T.W., et al., Spatial and Temporal Patterns of Green Fluorescent Protein (GFP) Fluorescence during Leaf Development in Transgenic Oilseed Rape, Brassica napus L., Plant Cell Rep., 2003, vol. 22, pp. 338–343.CrossRefGoogle Scholar
  25. 25.
    Koes, R.E., Spelt, C.E., Elzen, P.J.M., and Mol, J.N.M., Cloning and Molecular Characterization of the Chalcone Synthase Multigene Family of Petunia hybrid, Gene, 1989, vol. 81, pp. 245–257.PubMedCrossRefGoogle Scholar
  26. 26.
    De Paoli, E., Accerbi, M., Jeong, D.H., et al., Distinct Extremely Abundant siRNAs Associated with Cosuppression in Petunia, RNA, 2009, vol. 15, pp. 1965–1970.PubMedCrossRefGoogle Scholar
  27. 27.
    Davies, G.J., Sheikh, M.A., Ratcliffe, O.J., et al., Genetics of Homology-Dependent Gene Silencing in Arabidopsis: A Role for Methylation, Plant J., 1997, vol. 12, pp. 791–804.PubMedCrossRefGoogle Scholar
  28. 28.
    Meyer, P. and Heidmann, I., Epigenetic Variants of a Transgenic Petunia Line Show Hypermethylation in Transgene DNA: An Indication for Specific Recognition of Foreign DNA in Transgenic Plants, Mol. Gen. Genet., 1994, vol. 243, pp. 390–399.PubMedGoogle Scholar
  29. 29.
    Matzke, M.A. and Matzke, A.J.M., Differential Inactivation and Methylation of a Transgene in Plants by Two Suppressor Loci Containing Homologous Sequences, Plant. Mol. Biol., 1991, vol. 16, pp. 821–830.PubMedCrossRefGoogle Scholar
  30. 30.
    Matzke, A.J.M., Neuhuber, F., Park, Y.-D., et al., Homology-Dependent Gene Silencing in Transgenic Plants: Epistatic Silencing Loci Contain Multiple Copies of Methylated Transgenes, Mol. Gen. Genet., 1994, vol. 244, pp. 219–229.PubMedCrossRefGoogle Scholar
  31. 31.
    Neuhuber, F., Park, Y-D., Matzke, A.J.M., and Matzke, M.A., Susceptibility of Transgene Loci to Homology-Dependent Gene Silencing, Mol. Gen. Genet., 1994, vol. 244, pp. 230–241.PubMedCrossRefGoogle Scholar
  32. 32.
    Iglesias, V.A., Moscone, E.A., Papp, I., et al., Molecular and Cytogenetic Analyses of Stably and Unstably Expressed Transgene Loci in Tobacco, Plant Cell, 1997, vol. 9, pp. 1251–1264.PubMedCrossRefGoogle Scholar
  33. 33.
    Kilby, N.J., Leyser, H.M.O., and Furner, I.J., Promoter Methylation and Progressive Transgene Inactivation in Arabidopsis, Plant. Mol. Biol., 1992, vol. 20, pp. 103–112.PubMedCrossRefGoogle Scholar
  34. 34.
    Meza, T., Kamfjord, D., Hakelien, A.-M., et al., The Frequency of Silencing in Arabidopsis thaliana Varies Highly between Progeny of Siblings and Can Be Influenced by Environmental Factors, Transgenic Res., 2001, vol. 10, pp. 63–67.CrossRefGoogle Scholar
  35. 35.
    Loginova, D.B., Shumnyi, V.K., and Deineko, E.V., Features of T-DNA Insert Organization in Transgenic Tobacco-Plants, Line Nu 21, Vest. VOGiS, 2010, vol. 14, no. 1, pp. 659–665.Google Scholar
  36. 36.
    Charrier, B., Scollan, C., Ross, S., et al., Co-Silencing of Homologous Transgenes in Tobacco, Mol. Breed., 2000, vol. 6, pp. 407–419.CrossRefGoogle Scholar
  37. 37.
    Meyer, P., Heidmann, I., and Niedenhof, I., Differences in DNA-Methylation Are Associated with a Paramutation Phenomenon in Transgenic Petunia, Plant J., 1993, vol. 4, pp. 89–100.PubMedCrossRefGoogle Scholar
  38. 38.
    Ten Lohuis, M., Muller, A., Heidmann, I., et al., A Repetitive DNA Fragment Carrying a Hot Spot for de novo DNA Methylation Enhances Expression Variegation in Tobacco and Petunia, Plant J., 1995, vol. 8, pp. 919–932.PubMedCrossRefGoogle Scholar
  39. 39.
    Mueller, A., Marins, M., Kamisugi, Y., and Meyer, P., Analysis of Hypermethylation in the RPS Element Suggests a Signal Function for Short Inverted Repeats in de novo Methylation, Plant. Mol. Biol., 2002, vol. 48, pp. 383–399.CrossRefGoogle Scholar
  40. 40.
    Kunz, C., Narangajavana, J., Jakowitsch, J., et al., Studies on the Effects of a Flanking Repetitive Sequence on the Expression of Single-Copy Trans-genes in Nicotiana sylvestris and in N. sylvestris-N. tomentosiformis Hybrids, Plant. Mol. Biol., 2003, vol. 52, pp. 203–215.PubMedCrossRefGoogle Scholar
  41. 41.
    Takeda, S., Tadele, Z., Hofmann, I., et al., BRU1, a Novel Link between Responses to DNA Damage and Epigenetic Gene Silencing in Arabidopsis, Genes Dev., 2004, vol. 18, pp. 782–793.PubMedCrossRefGoogle Scholar
  42. 42.
    Ono, T., Kaya, H., Takeda, S., et al., Chromatin Assembly Factor 1 Ensures the Stable Maintenance of Silent Chromatin States in Arabidopsis, Genes Cells, 2006, vol. 11, pp. 153–162.PubMedCrossRefGoogle Scholar
  43. 43.
    Meyer, P., Linn, F., Heidmann, I., et al., Endogenous and Environmental Factors Influence 35S Promoter Methylation of a Maize A1 Gene Construct in Trans-genic Petunia and Its Color Phenotype, Mol. Gen. Genet., 1992, vol. 231, pp. 345–352.PubMedCrossRefGoogle Scholar
  44. 44.
    Jorgensen, R., Developmental Significance of Epigenetic Impositions on the Plant Genome: A Paragenetic Function for Chromosomes, Dev. Genet., 1994, vol. 15, pp. 523–532.CrossRefGoogle Scholar
  45. 45.
    Robbins, M.L., Wang, P., Sekhon, R.S., and Chopra, S., Gene Structure Induced Epigenetic Modifications of pericarp color1 Alleles of Maize Result in Tissue-Specific Mosaicism, PLoS ONE, 2009, vol. 4, no. 12, pp. 1–12.CrossRefGoogle Scholar
  46. 46.
    Walker, E.L., Paramutation of the r1 Locus of Maize Is Associated with Increased Cytosine Methylation, Genetics, 1998, vol. 148, pp. 1973–1981.PubMedGoogle Scholar
  47. 47.
    Suter, C.M. and Martin, I.K., Paramutation: The Tip of an Epigenetic Iceberg?, Trends Genet., 2009, vol. 26, no. 1, pp. 9–14.PubMedCrossRefGoogle Scholar
  48. 48.
    Ehlert, B., Schottler, M.A., Tischendorf, G., et al., The Paramutated SULFUREA Locus of Tomato Is Involved in Auxin Biosynthesis, J. Exp. Bot., 2008, vol. 59, no. 13, pp. 3635–3647.PubMedCrossRefGoogle Scholar
  49. 49.
    Bollmann, J., Carpenter, R., and Coen, E.S., Allelic Interactions at the nivea Locus of Antirrhinum, Plant Cell, 1991, vol. 3, pp. 1327–1336.PubMedCrossRefGoogle Scholar
  50. 50.
    Chandler, V.L., Paramutation: From Maize to Mice, Cell, 2007, vol. 128, pp. 641–645.PubMedCrossRefGoogle Scholar
  51. 51.
    Stam, M., Paramutation: A Heritable Change in Gene Expression by Allelic Interactions in Trans, Mol. Plant, 2009, vol. 2, no. 4, pp. 578–588.PubMedCrossRefGoogle Scholar
  52. 52.
    Koryakov, D.E. and Zhimulev, I.F., Khromosomy: Struktura i funktsii (Chromosomes: Structure and Functions), Novosibirsk: Izd. Sib. Otd. Ross. Akad. Nauk, 2009.Google Scholar
  53. 53.
    Ebbs, M.L., Bartee, L., and Bender, J., H3 Lysine 9 Methylation Is Maintained on a Transcribed Inverted Repeat by Combined Action of SUVH6 and SUVH4 Methyltransferases, Mol. Cell Biol., 2005, vol. 25, pp. 10507–10515.PubMedCrossRefGoogle Scholar
  54. 54.
    Verdel, A. and Moazed, D., RNAi-Directed Assembly of Heterochromatin in Fission Yeast, FEBS Lett., 2005, vol. 579, pp. 5872–5878.PubMedCrossRefGoogle Scholar
  55. 55.
    Ayoub, N., Goldshmidt, I., and Cohen, A., Position Effect Variegation at the Mating-Type Locus of Fission Yeast: A Cis-Acting Element Inhibits Covariegated Expression of Genes in the Silent and Expressed Domains, Genetics, 1999, vol. 152, pp. 495–508.PubMedGoogle Scholar
  56. 56.
    Serova, I.A., Andreeva, L.E., Khaidarova, N.V., et al., Mosaic Expression of the lacZ Reporter-Gene under Control of 5′-Regulatory Sequencies of the Alpha-S1-Casein Gene in Transgenic Mice, Tsitologiya, 2009, vol. 51, no. 11, pp. 917–923.Google Scholar
  57. 57.
    Wang, Y., Flemming, B.P., Martin, C.C., et al., Long-Range Enhancers Are Required to Maintain Expression of the Autoantigen Islet-Specific Glucose-6-Phosphatase Catalytic Subunit-Related Protein in Adult Mouse Islets in vivo, Diabetes, 2008, vol. 57, pp. 133–141.PubMedCrossRefGoogle Scholar
  58. 58.
    Bismuth, K., Skuntz, S., and Hallsson, J.H., An Unstable Targeted Allele of the Mouse Mitf Gene with a High Somatic and Germline Reversion Rate, Genetics, 2008, vol. 178, pp. 259–272.PubMedCrossRefGoogle Scholar
  59. 59.
    Festenstein, R., Tolaini, M., Corbella, P., et al., Locus Control Region Function and Heterochromatin-Induced Position Effect Variegation, Science, 1996, vol. 271, pp. 1123–1125.PubMedCrossRefGoogle Scholar
  60. 60.
    Milot, E., Strouboulis, J., Trimborn, T., et al., Hetero-chromatin Effects on the Frequency and Duration of LCR-Mediated Gene Transcription, Cell, 1996, vol. 87, pp. 105–114.PubMedCrossRefGoogle Scholar
  61. 61.
    Saveliev, A., Everett, C., Sharpe, T., et al., DNA Triplet Repeats Mediate Heterochromatin-Protein-1-Sensitive Variegated Gene Silencing, Nature, 2003, vol. 422, pp. 909–913.PubMedCrossRefGoogle Scholar
  62. 62.
    Krepulat, F., Lohler, J., Heinlein, C., et al., Epigenetic Mechanisms Affect Mutant p53 Transgene Expression in WAP-mutp53 Transgenic Mice, Oncogene, 2005, vol. 24, pp. 4645–4659.PubMedCrossRefGoogle Scholar
  63. 63.
    Liew, C.G., Draper, J.S., Walsh, J., et al., Transient and Stable Transgene Expression in Human Embryonic Stem Cells, Stem Cells, 2007, vol. 25, pp. 1521–1528.PubMedCrossRefGoogle Scholar
  64. 64.
    Yamasaki, T., Miyasaka, H., and Ohama, T., Unstable RNAi Effects through Epigenetic Silencing of an Inverted Repeat in Chlamydomonas reinhardtii, Genetics, 2008, vol. 180, pp. 1927–1944.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • T. V. Marenkova
    • 1
  • D. B. Loginova
    • 1
  • E. V. Deineko
    • 1
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations