Skip to main content
Log in

Highly efficient transfer and stable expression of two genes upon lentivirus transduction of mesenchymal stem cells from human bone marrow

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The efficiency of human bone marrow (BM) mesenchymal stem cell (MSC) transduction with a bicistronic lentivirus vector was estimated, and the stability of transgene expression in genetically modified MSCs was determined. First-passage BM MSCs were capable of efficient transduction with the bicistronic lentivirus vector. The transduction efficiency depended on the multiplicity of infection (MOI), being 64.64 ± 6.5 and 88.6 ± 2.9% at MOI 10 and 20, respectively. The lentivirus transduction efficiency proved independent on the number of passages of a BM MSC culture, and expression of the egfp and dsRed1 transgenes in genetically modified MSCs remained stable for one month of culturing. A comparison showed that the level of egfp and dsRed1 transgene expression was preserved upon hepatogenic differentiation in vitro. The results provide a basis for further development of multigenic modification of human BM MSCs for research and/or therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Baksh, D., Yao, R., and Tuan, R.S., Comparison of Proliferative and Multilineage Differentiation Potential of Human Mesenchymal Stem Cells Derived from Umbilical Cord and Bone Marrow, Stem Cells, 2007, vol. 25, no. 6, pp. 1384–1392.

    Article  PubMed  CAS  Google Scholar 

  2. Kern, S., Eichler, H., Stoeve, J., et al., Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, or Adipose Tissue, Stem Cells, 2006, vol. 24, no. 5, pp. 1294–1301.

    Article  PubMed  CAS  Google Scholar 

  3. Qiao, C., Xu, W., Zhu, W., et al., Human Mesenchymal Stem Cells Isolated from the Umbilical Cord, Cell. Biol. Int., 2008, vol. 32, no. 1, pp. 8–15.

    Article  PubMed  CAS  Google Scholar 

  4. Fukuchi, Y., Nakajima, H., Sugiyama, D., et al., Human Placenta-Derived Cells Have Mesenchymal Stem/Progenitor Cell Potential, Stem Cells, 2004, vol. 22, no. 5, pp. 649–658.

    Article  PubMed  CAS  Google Scholar 

  5. Fan, C.G., Tang, F.W., Zhang, Q.J., et al., Characterization and Neural Differentiation of Fetal Lung Mesenchymal Stem Cells, Cell Transplant., 2005, vol. 14, no. 5, pp. 311–321.

    Article  PubMed  Google Scholar 

  6. Bruder, S.P., Jaiswal, N., and Haynesworth, S.E., Growth Kinetics, Self-Renewal, and the Osteogenic Potential of Purified Human Mesenchymal Stem Cells during Extensive Subcultivation and Following Cryopreservation, J. Cell. Biochem., 1997, vol. 64, no. 2, pp. 278–294.

    Article  PubMed  CAS  Google Scholar 

  7. Caplan, A.I. and Dennis, J.E., Mesenchymal Stem Cells as Trophic Mediators, J. Cell. Biochem., 2006, vol. 98, no. 5, pp. 1076–1084.

    Article  PubMed  CAS  Google Scholar 

  8. Ferrari, G., Cusella, G., Angelis, D., et al., Muscle Regeneration by Bone Marrow-Derived Myogenic Progenitors, Science, 1998, vol. 279, no. 5356, pp. 1528–1530.

    Article  PubMed  CAS  Google Scholar 

  9. Segers, V.F.M. and Lee, R.T., Stem-Cell Therapy for Cardiac Disease, Nature, 2008, vol. 451, no. 21, pp. 937–942.

    Article  PubMed  CAS  Google Scholar 

  10. Petersen, B.E., Bowen, W.C., Patrene, K.D., et al., Bone Marrow as a Potential Source of Hepatic Oval Cells, Science, 1999, vol. 284, no. 5417, pp. 1168–1170.

    Article  PubMed  CAS  Google Scholar 

  11. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, S., et al., Adult Bone Marrow Stromal Cells Differentiate into Neural Cells in vitro, Exp. Neurol., 2000, vol. 164, no. 2, pp. 247–256.

    Article  PubMed  CAS  Google Scholar 

  12. Conrad, C., Gupta, R., Mohan, H., et al., Genetically Engineered Stem Cells for Therapeutic Gene Delivery, Curr. Gene Ther., 2007, vol. 7, no. 4, pp. 249–260.

    Article  PubMed  CAS  Google Scholar 

  13. Lu, F-Z., Fujino, M., Kitazawa, Y., et al., Characterization and Gene Transfer in Mesenchymal Stem Cells Derived from Human Umbilical-Cord Blood, J. Lab. Clin. Med., 2005, vol. 146, no. 5, pp. 271–278.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang, X-Y., La Russa, V.F., and Reiser, J., Transduction of Bone-Marrow-Derived Mesenchymal Stem Cells by Using Lentivirus Vectors Pseudotyped with Modified RD114 Envelope Glycoproteins, J. Virol., 2004, vol. 78, no. 3, pp. 1219–1229.

    Article  PubMed  CAS  Google Scholar 

  15. Delenda, C., Lentiviral Vectors: Optimization of Packaging, Transduction and Gene Expression, J. Gene Med., 2004, vol. 6, no. S1, pp. 125–S138.

    Article  Google Scholar 

  16. Ma, Y., Ramezani, A., Lewis, R., et al., High-Level Sustained Transgene Expression in Human Embryonic Stem Cells Using Lentiviral Vectors, Stem Cells, 2003, vol. 21, no. 1, pp. 111–117.

    Article  PubMed  CAS  Google Scholar 

  17. Cronin, J., Zhang, X-Y., and Reiser, J., Altering the Tropism of Lentiviral Vectors through Pseudotyping, Curr. Gene Ther., 2005, vol. 5, no. 4, pp. 387–398.

    Article  PubMed  CAS  Google Scholar 

  18. Suter, D.M., Cartier, L., Bettiol, E., et al., Rapid Generation of Stable Transgenic Embryonic Stem Cell Lines Using Modular Lentivectors, Stem Cells, 2006, vol. 24, no. 3, pp. 615–623.

    Article  PubMed  CAS  Google Scholar 

  19. Ben-Dor, I., Itsykson, P., Goldenberg, D., et al., Lentiviral Vectors Harboring a Dual-Gene System Allow High and Homogeneous Transgene Expression in Selected Polyclonal Human Embryonic Stem Cells, Mol. Ther., 2006, vol. 14, no. 2, pp. 255–267.

    Article  PubMed  CAS  Google Scholar 

  20. Dupuy, F.P., Mouly, E., Mesel-Lemoine, M., et al., Lentiviral Transduction of Human Hematopoietic Cells by HIV-1- and SIV-Based Vectors Containing a Bicistronic Cassette Driven by Various Internal Promoters, J. Gene Med., 2005, vol. 7, no. 9, pp. 1158–1171.

    Article  PubMed  CAS  Google Scholar 

  21. Yu, X., Zhan, X., D’Costa, J., et al., Lentiviral Vectors with Two Independent Internal Promoters Transfer High-Level Expression of Multiple Transgenes to Human Hematopoietic Stem-Progenitor Cells, Mol. Ther., 2003, vol. 7, no. 6, pp. 827–838.

    Article  PubMed  CAS  Google Scholar 

  22. Tondreau, T., Lagneaux, L., Dejeneffe, M., et al., Isolation of BM Mesenchymal Stem Cells by Plastic Adhesion or Negative Selection: Phenotype, Proliferation Kinetics and Differentiation Potential, Cytotherapy, 2004, vol. 6, no. 4, pp. 372–379.

    Article  PubMed  CAS  Google Scholar 

  23. Jaiswal, N., Haynesworth, S.E., Caplan, A.I., and Bruder, S.P., Osteogenic Differentiation of Purified, Culture-Expanded Human Mesenchymal Stem Cells in vitro, J. Cell. Biochem., 1997, vol. 64, no. 2, pp. 295–312.

    Article  PubMed  CAS  Google Scholar 

  24. Scharstuhl, A., Schewe, B., Benz, K., et al., Chondrogenic Potential of Human Adult Mesenchymal Stem Cells Is Independent of Age or Osteoarthritis Etiology, Stem Cells, 2007, vol. 25, no. 12, pp. 3244–3251.

    Article  PubMed  CAS  Google Scholar 

  25. Talens-Visconti, R., Bonora, A., Jover, R., et al., Hepatogenic Differentiation of Human Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells, World J. Gastroenterol., 2006, vol. 12, no. 36, pp. 5834–5845.

    PubMed  CAS  Google Scholar 

  26. Naldini, L., Bloemer, U., Gallay, P., et al., In vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector, Science, 1996, vol. 272, no. 5259, pp. 263–267.

    Article  PubMed  CAS  Google Scholar 

  27. Karolewski, B.A., Watson, D.J., Parente, M.K., and Wolfe, J.H., Comparison of Transfection Conditions for a Lentivirus Vector Produced in Large Volumes, Hum. Gene Ther., 2003, vol. 14, no. 14, pp. 1287–1296.

    Article  PubMed  CAS  Google Scholar 

  28. Sastry, L., Johnson, T., Hobson, M.J., et al., Titering Lentiviral Vectors: Comparison of DNA, RNA and Marker Expression Methods, Gene Ther., 2002, vol. 9, no. 17, pp. 1155–1162.

    Article  PubMed  CAS  Google Scholar 

  29. Dominici, M., Le Blanc, K., Mueller, I., et al., Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells: The International Society for Cellular Therapy Position Statement, Cytotherapy, 2004, vol. 8, no. 4, pp. 315–317.

    Article  Google Scholar 

  30. Grinev, V.V., Radishevskaya, A.A., and Heidenreich, O., Effective Transgene Transfer into Human Leukemia Cells by Second Generation of Lentivirus Vectors, Proc. Bel. State Univ., 2008, vol. 3, pp. 82–86.

    Google Scholar 

  31. Shakhbazau, A.V., Sevyaryn, I.N., Goncharova, N.V., et al., Viral Vectors for Stable Transduction of Human Mesenchymal Stem Cells: Systems Based on Adeno-Associated Viruses and Lentiviruses, Bull. Exp. Biol. Med., 2008, vol. 146, no. 4, pp. 531–533.

    Article  PubMed  CAS  Google Scholar 

  32. Piersanti, S., Sacchetti, B., Funari, A., et al., Lentiviral Transduction of Human Postnatal Skeletal (Stromal, Mesenchymal) Stem Cells: In vivo Transplantation and Gene Silencing, Calcif. Tissue Int., 2006, vol. 78, no. 6, pp. 372–384.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, X-Y., La Russa, V.F., Bao, L., et al., Lentiviral Vectors for Sustained Transgene Expression in Human Bone Marrow-Derived Stromal Cells, Mol. Ther., 2002, vol. 5, no. 5, pp. 555–565.

    Article  PubMed  CAS  Google Scholar 

  34. Kallifatidis, G., Beckermann, B.M., Groth, A., et al., Improved Lentiviral Transduction of Human Mesenchymal Stem Cells for Therapeutic Intervention in Pancreatic Cancer, Cancer Gene Ther., 2008, vol. 15, no. 4, pp. 231–240.

    Article  PubMed  CAS  Google Scholar 

  35. Chan, J., O’Donoghue, K., de la Fuente, J., et al., Human Fetal Mesenchymal Stem Cells as Vehicles for Gene Delivery, Stem Cells, 2005, vol. 23, no. 1, pp. 93–102.

    Article  PubMed  CAS  Google Scholar 

  36. Woods, N-B., Muessig, A., Schmidt, M., et al., Lentiviral Vector Transduction of NOD/SCID Repopulating Cells Results in Multiple Vector Integrations per Transduced Cell: Risk of Insertional Mutagenesis, Blood, 2003, vol. 101, no. 4, pp. 1284–1289.

    Article  PubMed  CAS  Google Scholar 

  37. Strack, R.L., Strongin, D.E., Bhattacharyya, D., et al., A Noncytotoxic DsRed Variant for Whole-Cell Labeling, Nat. Method, 2008, vol. 5, no. 11, pp. 955–957.

    Article  CAS  Google Scholar 

  38. Clements, M.O., Godfrey, A., Crossley, J., et al., Lentiviral Manipulation of Gene Expression in Human Adult and Embryonic Stem Cells, Tissue Eng., 2006, vol. 12, no. 7, pp. 1741–1751.

    Article  PubMed  CAS  Google Scholar 

  39. Lee, C.I., Kohn, D.B., Ekert, J.E., and Tarantal, A.F., Morphological Analysis and Lentiviral Transduction of Fetal Monkey Bone Marrow-Derived Mesenchymal Stem Cells, Mol. Ther., 2004, vol. 9, no. 1, pp. 112–123.

    Article  PubMed  CAS  Google Scholar 

  40. Shaner, N.C., Steinbach, P.A., and Tsien, R.Y., A Guide to Choosing Fluorescent Proteins, Nat. Method, 2005, vol. 2, no. 12, pp. 905–909.

    Article  CAS  Google Scholar 

  41. Bevis, B.J. and Glick, B.S., Rapidly Maturing Variants of the Discosoma Red Fluorescent Protein (DsRed), Nat. Biotech., 2002, vol. 20, no. 1, pp. 83–87.

    Article  CAS  Google Scholar 

  42. Marchant, J.S., Stutzmann, G.E., Leissring, M.A., et al., Multiphoton-Evoked Color Change of DsRed as an Optical Highlighter for Cellular and Subcellular Labeling, Nat. Biotech., 2005, vol. 19, no. 7, pp. 645–649.

    Article  Google Scholar 

  43. Barzilay, R., Ben-Zur, T., Bulvik, S., et al., Lentiviral Delivery of LMX1a Enhances Dopaminergic Phenotype in Differentiated Human Bone Marrow Mesenchymal Stem Cells, Stem Cell Dev., 2009, vol. 18, no. 4, pp. 591–601.

    Article  CAS  Google Scholar 

  44. Yang, X-J., Zhou, Y-F., Li, H-X., et al., Mesenchymal Stem Cells as a Gene Delivery System to Create Biological Pacemaker Cells in vitro, J. Int. Med. Res., 2008, vol. 36, no. 5, pp. 1049–1055.

    PubMed  CAS  Google Scholar 

  45. Sgodda, M., Aurich, H., Kleist, S., et al., Hepatocyte Differentiation of Mesenchymal Stem Cells from Rat Peritoneal Adipose Tissue in vitro and in vivo, Exp. Cell Res., 2007, vol. 313, no. 13, pp. 2875–2886.

    Article  PubMed  CAS  Google Scholar 

  46. Anjos-Afonso, F., Siapati, E.K., and Bonnet, D., In vivo Contribution of Murine Mesenchymal Stem Cells into Multiple Cell-Types under Minimal Damage Conditions, J. Cell Sci., 2004, vol. 117, no. 23, pp. 5655–5664.

    Article  PubMed  CAS  Google Scholar 

  47. Brown, S.E., Tong, W., and Krebsbach, P.H., The Derivation of Mesenchymal Stem Cells from Human Embryonic Stem Cells, Cell. Tiss. Organ., 2009, vol. 189, nos. 1–4, pp. 256–260.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Grinev.

Additional information

Original Russian Text © V.V. Grinev, I.N. Seviaryn, D.V. Posrednik, S.M. Kosmacheva, M.P. Potapnev, 2012, published in Genetika, 2012, Vol. 48, No. 3, pp. 389–400.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinev, V.V., Seviaryn, I.N., Posrednik, D.V. et al. Highly efficient transfer and stable expression of two genes upon lentivirus transduction of mesenchymal stem cells from human bone marrow. Russ J Genet 48, 336–346 (2012). https://doi.org/10.1134/S1022795412030039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795412030039

Keywords