Skip to main content
Log in

Population genetic structure of wild-growing ginseng (Planax ginseng C.A. Meyer) assessed using AFLP markers

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genetic variability in ten populations of wild-growing ginseng was assessed using AFLP markers with the application of fragment analysis on a genetic analyzer. The variation indices were high in the populations (P = 55.68%, H S = 0.1891) and for the species (P = 99.65%; H S = 0.2857). Considerable and statistically significant population differentiation was demonstrated (θB = 0.363; Bayesian approach, “full model”; F ST = 0.36, AMOVA). The results of AMOVA and Bayesian analysis indicate that 64.46% of variability is found within the populations. Mantel test showed no correlation between the genetic and geographic distances among the populations (r = −0.174; p = 0.817). Hierarchical AMOVA and analysis of genetic relationships based on Euclidean distances (NJ, PCoA, and MST) identified two divergent population groups of ginseng. Low gene flow between these groups (N m = 0.4) suggests their demographic independence. In accordance to the concept of evolutionary significant units (ESU), these population groups, in terms of the strategy and tactics for conservation and management of natural resources, should be treated as management units (MUs). The MS tree topology suggests recolonization of southern Sikhote-Alin by ginseng along two directions, from south and west.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leem, K., Kim, S.C., Yang, C.Ha., and Seo, J., Genetic Identification of Panax ginseng and Panax quinquefolius by Pyrosequencing Methods, Boisci. Biotechnol. Biochem., 2005, vol. 69, no. 9, pp. 1771–1773.

    Article  CAS  Google Scholar 

  2. Zhuravlev, Yu.N. and Kolyada, A.S., Araliaceae: Zhen’shen’ i drugie (Araliaceae: Ginseng and Others), Vladivostok: Dal’nauka, 1996.

    Google Scholar 

  3. Perechen’ ob“ektov rastitel’nogo i zhivotnogo mira, zanesennykh v Krasnuyu knigu Primorskogo kraya (Index of Plant and Animal Objects Registered in the Red Book of Primorye Territory), ai]Kozhevnikov, A.E. and Kostenko, V.A., Eds., Vladivostok: Apostrof, 2002.

    Google Scholar 

  4. Lande, R., Genetics and Demography in Biological Conservation, Science, 1988, vol. 241, pp. 1455–1460.

    Article  PubMed  CAS  Google Scholar 

  5. Crawford, D.L., Molecular Markers for the Study of Genetic Variation within and between Populations of Rare Plants, Opera Bot., 1997, vol. 132, pp. 149–157.

    Google Scholar 

  6. Zhuravlev, Yu.N., Koren, O.G., Kozyrenko, M.M., et al., Use of Molecular Markers to Design the Reintroduction Strategy for Panax ginseng, Biodiversity and Allelopathy: From Organism to Ecosystems in the Pacific, (Proc. PSA Symposium), Chou, C.H., Waller, G.R., and Reinhardt, C., Eds., Taipei: Acad. Sinica, 1999, pp. 183–192.

    Google Scholar 

  7. Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.

    Google Scholar 

  8. Zhuravlev, Yu.N., Reunova, G.D., Artyukova, E.V., et al., Genetic Variation in the Wild Ginseng Population Revealed by RAPD Method, Mol. Biol. (Moscow), 1998, vol. 32, pp. 1075–1079.

    Google Scholar 

  9. Mosseler, A., Egger, K.N., and Hughes, G.A., Low Levels of Genetic Diversity in Red Pine Confirmed by Random Amplified Polymorphic DNA Markers, Can. J. For. Res., 1992, vol. 22, pp. 1332–1337.

    Article  CAS  Google Scholar 

  10. Reunova, G.D., Kats, I.L., Muzarok, T.I., and Zhuravlev, Yu.N., Polymorphism of RAPD, ISSR and AFLP Markers of the Panax ginseng C.A. Meyer (Araliaceae) Genome, Russ. J. Genet., 2010, vol. 46, no. 8, pp. 938–947.

    Article  CAS  Google Scholar 

  11. Ma, X.-J., Wang, X.-Q., Xiao, P.-G., and Hong, D.-Y., A Study on Germplasm of Panax ginseng and Its DNA Fingerprinting, in The 7th International Symposium on Ginseng, Seoul, 1998, pp. 89–90.

  12. Ha, W.Y., Shaw, P.C., Liu, J., et al., Authentication of Panax ginseng and Panax quinquefolius Using Amplified Fragment Length Polymorphism (AFLP) and Directed Amplification of Minisatellite Region DNA (DAMD), J. Agric. Food Chem., 2002, vol. 50, no. 7, pp. 1871–1875.

    Article  PubMed  CAS  Google Scholar 

  13. Hong Deborah, Y.Q., Lau, A.J., Yeo, C.L., et al., Genetic Diversity and Variation of Saponin Contents in Panax notoginseng Roots from a Single Farm, J. Agric. Food Chem., 2005, vol. 53, no. 22, pp. 8460–8467.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, D., Hong, D., and Koh, H.-ling, et al., Biodiversity in Cultivated Panax notoginseng Populations, Acta Pharmacol. Sin., 2008, vol. 29, no. 9, pp. 1137–1140.

    Article  PubMed  CAS  Google Scholar 

  15. Zhou, S.-L., Xiong, G.-M., Li, Z.-Y., and Wen, J., Loss of Genetic Diversity of Domesticated Panax notoginseng F.H. Cheng as Evidenced by ITS Sequence and AFLP Polymorphism: A Comparative Study with P. stipuleanatus H.T. et K.M. Feng, J. Integr. Plant Biol., 2005, vol. 47, no. 1, pp. 107–115.

    Article  CAS  Google Scholar 

  16. Echt, C.S., Erdahl, L.A., and McCoy, T.J., Genetic Segregation of Random Amplified Polymorphic DNA in Diploid Cultivated Alfalfa, Genome, 1992, vol. 35, no. 1, pp. 84–87.

    Article  PubMed  CAS  Google Scholar 

  17. Murray, M.G. and Thompson, W.F., Rapid Isolation of High Molecular Weight Plant DNA, Nucleic Acids Res., 1980, vol. 8, no. 19, pp. 4321–4325.

    Article  PubMed  CAS  Google Scholar 

  18. Vos, P.R., Hogers, M., Bleeker, M., et al., AFLP: A New Technique for DNA Fingerprinting, Nucleic Acids Res., 1995, vol. 23, no. 21, pp. 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  19. Yeh, F.C. and Boyle, T.J.B., Population Genetic Analysis of Co-Dominant and Dominant Markers and Quantitative Traits, Belgian J. Botany, 1997, vol. 129, p. 157.

  20. Holsinger, K.E. and Lewis, P.O., Hickory: A Package for Analysis of Population Genetic Data, ver. 8, Storrs: Univ. Connecticut, 2003.

    Google Scholar 

  21. Raymond, M.L. and Rousset, F., An Exact Test for Population Differentiation, Evolution, 1995, vol. 49, pp. 1280–1283.

    Article  Google Scholar 

  22. Miller, M.P., Tools for Population Genetic Analysis (TFPGA) 1.3: A Windows Program for the Analysis of Allozyme and Molecular Population Genetic Data, 1997, Computer Software Distributed by Author.

  23. Excoffier, L., Smouse, P.E., and Quattro, J.M., Analysis of Molecular Variance Inferred from Metric Distances among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data, Genetics, 1992, vol. 131, pp. 479–491.

    PubMed  CAS  Google Scholar 

  24. Schneider, S., Roessli, D., and Excoffier, L., ARLE-QUIN, Version 2.000: A Software for Population Genetics Data Analysis, Geneva: Univ. Geneva, 2000.

    Google Scholar 

  25. Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and van der Linder, A., Bayesian Measures of Model Complexity and Fit, J. R. Stat. Soc., Ser. B, 2002, vol. 64, pp. 583–639.

    Article  Google Scholar 

  26. Slatkin, M. and Barton, N.H., A Comparison of Three Indirect Methods for Estimating Average Levels of Gene Flow, Evolution, 1989, vol. 43, pp. 1349–1368.

    Article  Google Scholar 

  27. Rohlf, F.J., NTSYS-Pc: Numerical Taxonomy and Multivariate Analysis System: Version 1.80, New York: Exeter, 1998.

    Google Scholar 

  28. Sokal, R. and Rohlf, J., Biometry: The Principles and Practice of Statistics in Biological Research, NewYork: Freeman, 1994, 3rd ed.

    Google Scholar 

  29. Peakall, R. and Smouse, P.E., GENALEX Ver. 6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research, Mol. Ecol. Notes, 2006, vol. 6, pp. 288–295.

    Article  Google Scholar 

  30. Zhuravlev, Yu.N., Koren, O.G., Reunova, G.D., et al., Panax ginseng Natural Populations: Their Past, Current State and Perspectives, Acta Pharmacol. Sin., 2008, vol. 29, no. 9, pp. 1127–1136.

    Article  PubMed  CAS  Google Scholar 

  31. Hamrick, J.L. and Godt, M.J.V., Allozyme Diversity in Plant Species, Plant Population Genetics, Breeding and Genetic Resources, Brown, A.H.D., Clegg, M.T., Kahler, A.L., and Weir, B.S, Eds., Sunderland: Sinauer, 1989, pp. 43–64.

    Google Scholar 

  32. Nybom, H., Comparison of Different Nuclear DNA Markers for Estimating Intraspecific Genetic Diversity in Plants, Mol. Ecol., 2004, vol. 13, pp. 1143–1155.

    Article  PubMed  CAS  Google Scholar 

  33. Ma, X.J., Wang, X.Q., Xu, Z.X., et al., RAPD Variation within and among Populations of Ginseng Cultivars, Acta Bot. Sin., 2000, vol. 42, no. 6, pp. 587–590.

    CAS  Google Scholar 

  34. Kim, C. and Choi, H.K., Genetic Diversity and Relationship in Korean Ginseng (Panax ginseng) Based on RAPD Analysis, Korean J. Genet., 2003, vol. 25, no. 3, pp. 181–188.

    CAS  Google Scholar 

  35. Wright, S., The Genetic Structure of Populations, Ann. Eugen., 1951, vol. 15, pp. 323–354.

    Article  Google Scholar 

  36. Moritz, C., Defining “Evolutionary Significant Units” for Conservation, Trends Ecol. Evol., 1994, vol. 9, pp. 373–375.

    Article  PubMed  CAS  Google Scholar 

  37. Peters, M.D., Xiang, Q.-Y. (Jenny), Thomas, D.T., et al., Genetic Analysis of the Federally Endangered Echinacea laevigata Using Amplified Fragment Length Polymorphisms (AFLP)—Inferences in Population Genetic Structure and Mating System, Conserv. Genet., 2009, vol. 10, pp. 1–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Reunova.

Additional information

Original Russian Text © G.D. Reunova, I.L. Kats, T.I. Muzarok, Cheng T.P. Nguen, T. T. Dang, Yu.N. Zhuravlev, 2012, published in Genetika, 2012, Vol. 48, No. 3, pp. 340–351.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reunova, G.D., Kats, I.L., Muzarok, T.I. et al. Population genetic structure of wild-growing ginseng (Planax ginseng C.A. Meyer) assessed using AFLP markers. Russ J Genet 48, 291–301 (2012). https://doi.org/10.1134/S1022795412020135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795412020135

Keywords

Navigation