Skip to main content
Log in

Isolation and sequence analysis of Sox genes from lizard Eremias multiocellata

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The Sox (SRY-related high-mobility-group box) family of genes shares a conserved HMG box and is involved in a diverse range of developmental processes and sex determination in vertebrates. Twenty Sox genes are present in the genomes of humans and mice, but far less is known about the Sox gene family in reptiles. Using two pairs of highly degenerate primers designed from a multiple alignment of Sox amino acid sequences in several species, different positive clones were obtained from male and female Eremias multiocellata, a viviparous lizard which is subject to TSD (temperature-dependent sex determination). These clones were sequenced and identified. They are members of the SoxB (Sox2, Sox14), SoxC (Sox11, Sox12) and SoxE (Sox9a, Sox9b, Sox10) groups. No sex-specific differences were observed. Based on the amino acid sequence similarities, the phylogenetic analysis was carried out and these genes clustered with their orthologues. In addition, we found the gene duplication in E. multiocellata, it may be a mechanism to produce new functional genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sinclair, A., Berta, P., Palmer, M., et al., A Gene from the Human Sex-Determining Region Encodes a Protein with Homology to a Conserved DNA-Binding Motif, Nature, 1990, vol. 346, pp. 240–244.

    Article  PubMed  CAS  Google Scholar 

  2. Schepers, G., Teasdale, R., and Koopman, P., Twenty Pairs of Sox: Extent, Homology, and Nomenclature of the Mouse and Human sox Transcription Factor Gene Families, Dev. Cell, 2002, vol. 3, pp. 167–170.

    Article  PubMed  CAS  Google Scholar 

  3. Bowles, J., Schepers, G., and Koopman, P., Phylogeny of the SOX Family of Developmental Transcription Factors Based on Sequence and Structural Indicators, Dev. Biol., 2000, vol. 227, pp. 239–255.

    Article  PubMed  CAS  Google Scholar 

  4. Nagai, K., Molecular Evolution of Sry and Sox Gene, Gene, 2001, vol. 270, pp. 161–169.

    Article  PubMed  CAS  Google Scholar 

  5. Takamatsu, N., Kanda, H., Tsuchiya, I., et al., A Gene That is Related to SRY and Is Expressed in the Testes Encodes a Leucine Zipper-Containing Protein, Mol. Cell. Biol., 1995, vol. 15, pp. 3759–3766.

    PubMed  CAS  Google Scholar 

  6. Valenzuela, N., Multivariate Expression Analysis of the Gene Network Underlying Sexual Development in Turtle Embryos with Temperature-Dependent and Genotypic Sex Determination, Sexual Dev., 2010, vol. 4, pp. 39–49.

    Article  CAS  Google Scholar 

  7. Collignon, J., Sockanathan, S., Hacker, A., et al., A Comparison of the Properties of Sox-3 with Sry and Two Related Genes, Sox-1 and Sox-2, Development, 1996, vol. 122, pp. 509–520.

    PubMed  CAS  Google Scholar 

  8. Cheung, M., Abu-Elmagd, M., Clevers, H., and Scotting, P., Roles of Sox4 in Central Nervous System Development, Mol. Brain Res., 2000, vol. 79, pp. 180–191.

    Article  PubMed  CAS  Google Scholar 

  9. Sandberg, M., Kaellstroem, M., and Muhr, J., Sox21 Promotes the Progression of Vertebrate Neurogenesis, Nat. Neurosci., 2005, vol. 8, pp. 995–1001.

    Article  PubMed  CAS  Google Scholar 

  10. Yuki Oshima, K.N., Yoriko Nakamura, and Masahisa Nakamura, Sox3: A Transcription Factor for Cyp19 Expression in the Frog Rana rugosa, Gene, 2009, vol. 445, pp. 38–48.

    Article  PubMed  Google Scholar 

  11. Dai, X., Zeng, X., Chen, B., and Wang, Y., The Research on the Karyotypes of Six Species in the Genus Eremias from China, Hereditas, 2004, vol. 26, pp. 669–675.

    PubMed  Google Scholar 

  12. Zhang, D.J., Tang, X.L., Yue, F., et al., Effect of Gestation Temperature on Sexual and Morphological Phenotypes of Offspring in a Viviparous Lizard, Eremias multiocellata, J. Thermal Biol., 2010, vol. 35, pp. 129–133.

    Article  Google Scholar 

  13. Cremazy, F., Soullier, S., Berta, P., and Jay, P., Further Complexity of the Human SOX Gene Family Revealed by the Combined Use of Highly Degenerate Primers and Nested PCR, FEBS Lett., 1998, vol. 438, pp. 311–314.

    Article  PubMed  CAS  Google Scholar 

  14. Hett, A. and Ludwig, A., SRY-Related (Sox) Genes in the Genome of European Atlantic Sturgeon (Acipenser sturio), Genome, 2005, vol. 48, pp. 181–186.

    Article  PubMed  CAS  Google Scholar 

  15. Li, J., Zheng, P.P., Song, J.L., et al., Isolation and Sequencing of Seven Sox Genes from the Lacertid Lizard Eremias breuchleyi, Genet. Mol. Biol., 2006, vol. 29, pp. 576–579.

    Article  CAS  Google Scholar 

  16. Hoser, M., Potzner, M., Koch, J., et al., Sox12 Deletion in the Mouse Reveals Nonreciprocal Redundancy with the Related Sox4 and Sox11 Transcription Factors, Mol. Cell. Biol., 2008, vol. 28, pp. 4675–4687.

    Article  PubMed  CAS  Google Scholar 

  17. Popovic, J. and Stevanovic, M., Remarkable Evolutionary Conservation of SOX14 Orthologues, J. Genet., 2009, vol. 88, pp. 15–24.

    Article  PubMed  CAS  Google Scholar 

  18. Yusuke Kamachi and Kondoh, H., Two Distinct Subgroups of Group B Sox Genes for Transcriptional Activators and Repressors: Their Expression during Embryonic Organogenesis of the Chicken, Mech. Dev., 1999, vol. 84, pp. 103–120.

    Article  PubMed  Google Scholar 

  19. Lefebvre, V., Dumitriu, B., Penzo-Mendez, A., et al., Control of Cell Fate and Differentiation by Sry-Related High-Mobility-Group Box (Sox) Transcription Factors, Int. J. Biochem. Cell Biol., 2007, vol. 39, pp. 2195–2214.

    Article  PubMed  CAS  Google Scholar 

  20. Schepers, G., Bullejos, M., Hosking, B., and Koopman, P., Cloning and Characterisation of the Sry-Related Transcription Factor Gene Sox8, Nucleic Acids Res., 2000, vol. 28, pp. 1473–1480.

    Article  PubMed  CAS  Google Scholar 

  21. Koopman, P., Sex Determination: A Tale of Two Sox Genes, Trends Genet., 2005, vol. 21, pp. 367–370.

    Article  PubMed  CAS  Google Scholar 

  22. Polanco, J., Wilhelm, D., Davidson, T., et al., Sox10 Gain-of-Function Causes XX Sex Reversal in Mice: Implications for Human 22q-Linked Disorders of Sex Development, Hum. Mol. Genet., 2009, vol. 19, pp. 506–516.

    Article  PubMed  Google Scholar 

  23. Zhou, R.J., Liu, L., Guo, Y.Q., et al., Similar Gene Structure of Two Sox9a Genes and Their Expression Patterns during Gonadal Differentiation in a Teleost Fish, Rice Field Eel (Monopterus albus), Mol. Reprod. Dev., 2003, vol. 66, pp. 211–217.

    Article  PubMed  CAS  Google Scholar 

  24. Barrionuevo, F. and Scherer, G., SOX E Genes: SOX9 and SOX8 in Mammalian Testis Development, Int. J. Biochem. Cell Biol., 2010, vol. 42, pp. 433–436.

    Article  PubMed  CAS  Google Scholar 

  25. Chiang, E., Pai, C., Wyatt, M., et al., Two sox9 Genes on Duplicated Zebrafish Chromosomes: Expression of Similar Transcription Activators in Distinct Sites, Dev. Biol., 2001, vol. 231, pp. 149–163.

    Article  PubMed  CAS  Google Scholar 

  26. Karsenty, G., Transcriptional Control of Skeletogenesis, Annu. Rev. Genomics Hum. Genet., 2008, vol. 9, pp. 183–196.

    Article  PubMed  CAS  Google Scholar 

  27. Kent, J., Wheatley, S., Andrews, J., et al., A Male-Specific Role for SOX9 in Vertebrate Sex Determination, Development, 1996, vol. 122, pp. 2813–2822.

    PubMed  CAS  Google Scholar 

  28. Maldonado, L., Landa Piedra, A., Moreno Mendoza, N., et al., Expression Profiles of Dax1, Dmrt1, and Sox9 during Temperature Sex Determination in Gonads of the Sea Turtle Lepidochelys olivacea, Gen. Comp. Endocrinol., 2002, vol. 129, pp. 20–26.

    Article  Google Scholar 

  29. Shoemaker, C., Queen, J., and Crews, D., Response of Candidate Sex-Determining Genes to Changes in Temperature Reveals Their Involvement in the Molecular Network Underlying Temperature-Dependent Sex Determination, Mol. Endocrinol., 2007, vol. 21, pp. 2750–2763.

    Article  PubMed  CAS  Google Scholar 

  30. Western, P., Harry, J., Graves, J., and Sinclair, A., Temperature-Dependent Sex Determination: Upregulation of SOX9 Expression after Commitment to Male Development, Dev. Dyn., 1999, vol. 214, pp. 171–177.

    Article  PubMed  CAS  Google Scholar 

  31. Prince, V. and Pickett, F., Splitting Pairs: The Diverging Fates of Duplicated Genes, Nat. Rev. Genet., 2002, vol. 3, pp. 827–837.

    Article  PubMed  CAS  Google Scholar 

  32. Blackburn, D., Reptilian Viviparity: Past Research, Future Directions, and Appropriate Models, in Comparative Biochemistry and Physiology, part A: Molecular and Integrative Physiology, 2000, vol. 127, pp. 391–409.

    Article  CAS  Google Scholar 

  33. Thompson, M., Stewart, J., Speake, B., et al., Evolution of Viviparity: What Can Australian Lizards Tell Us? in Comparative Biochemistry and Physiology, part B: Biochemistry and Molecular Biology, 2002, vol. 131, pp. 631–643.

    Article  Google Scholar 

  34. Shine, R., A New Hypothesis for the Evolution of Viviparity in Reptiles, Am. Naturalist, 1995, vol. 145, pp. 809–823.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Xin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, Y., Tang, X., Yue, F. et al. Isolation and sequence analysis of Sox genes from lizard Eremias multiocellata. Russ J Genet 48, 79–85 (2012). https://doi.org/10.1134/S102279541201019X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541201019X

Keywords

Navigation