Skip to main content

The role of metabolic activation of promutagens in the genome destabilization under pheromonal stress in the house mouse (Mus musculus)


The hypothesis on a relationship between the high frequency of mitotic disturbances in bone marrow cells and the change in the activity of the S9 liver fraction containing promutagen-activating enzymes under olfactory stress in the house mouse Mus musculus has been tested. For this purpose, the effect of the pheromone 2,5-dimethylpyrazine on the frequency of mitotic disturbances in mouse bone marrow cells has been measured by the anaphase-telophase assay. In paralled, we compared the capacities of the S9 liver fractions from stressed and intact mice for activating the promutagen 2-aminofluorene in the Ames test utilizing Salmonella typhimurium. It has been demonstrated that the increased frequency of mitotic disturbances in bone marrow cells induced by the pheromonal stressor in male house mice is accompanied by an increased ability of the S9 liver fraction to activate the promutagen. The model system used in the study allowed the genetic consequences of the exposure to the olfactory stressor to be estimated and the possible mechanisms of genome destabilization to be assumed.

This is a preview of subscription content, access via your institution.

Similar content being viewed by others


  1. Selye, H., The Physiology and Pathology of Exposure to Stress, Montreal: Acta Med., 1950.

    Google Scholar 

  2. Selye, H., Ocherki ob adaptatsionnom sindrome (Essays about Adaptation Syndrome), Moscow: Medgiz, 1960.

    Google Scholar 

  3. Elliott, G.R. and Eisdorfer, C., Stress and Human Health, New York: Springer, 1982, pp. 55–80.

    Google Scholar 

  4. Schneiderman, N., Ironson, G., and Siegel, S., Stress and Health: Psychological, Behavioral, and Biological Determinants, Annu. Rev. Clin. Psychol., 2005, vol. 1, pp. 607–628.

    Article  PubMed  Google Scholar 

  5. Kalantaridou, S.N., Zoumakisb, E., Makrigiannakisc, A., et al., Corticotropin-Releasing Hormone, Stress and Human Reproduction: An Update, J. Reprod. Immunol., 2010, vol. 85, pp. 33–39.

    Article  PubMed  CAS  Google Scholar 

  6. Chida, Y., Hamer, M., Wardle, J., and Steptoe, A., Do Stress-Related Psychosocial Factors Contribute to Cancer Incidence and Survival?, Nat. Clin. Pract. Oncol., 2008, vol. 5, no. 8, pp. 466–475.

    Article  PubMed  Google Scholar 

  7. Freeman, M.L., Sheridan, B.S., Bonneau, R.H., and Hendricks, R.L., Psychological Stress Compromises CD8+ T Cell Control of Latent Herpes Simplex Virus Type 1 Infections, J. Immunol., 2007, vol. 179, no. 1, pp. 322–328.

    PubMed  CAS  Google Scholar 

  8. Daev, E.V., Effect of Exogenous Metabolites on Cytogenetic Characteristics of Spermatogenesis and Reproductive Function of House Mouse Males, Cand. Sci. (Biol.) Dissertation, Leningrad: All-Union Institute of Plant Industry, 1983, p. 16.

  9. Daev, E.V., Genetic Consequences of Olfactory Stresses in Mice, Doctoral (Biol.) Dissertation, St. Petersburg: St-Petersburg State Univ., 2006, p. 280.

    Google Scholar 

  10. Gidron, Y., Russ, K., Tissarchondou, H., and Warner, J., The Relation between Psychological Factors and DNA-Damage: A Critical Review, Abstr. Biol. Psychol., 2006, vol. 72, pp. 291–304.

    Article  Google Scholar 

  11. Daev, E.V., Pheromonal Regulation of Genetic Processes: Research on the House Mouse (Mus musculus L.), Russ. J. Genet., 1994, vol. 30, no. 8, pp. 964–970.

    Google Scholar 

  12. Daev, E.V., Kazarova, V.E., and Vyborova, A.M., Effects of “Pheromone-Like” Pyrazine-Containing Compounds on Stability of Genetic Apparatus in Bone Marrow Cells of the Male House Mouse Mus musculus L., J. Evol. Biochem. Physiol., 2009, vol. 45, no. 5, pp. 589–595.

    Article  CAS  Google Scholar 

  13. Novotny, M.V., Pheromones, Binding Proteins and Receptor Responses in Rodents, Biochem. Soc. Trans., 2003, vol. 31, no. 1, pp. 117–122.

    Article  PubMed  CAS  Google Scholar 

  14. Ames, B.N., Duston, W.E., Yamasaki, E., and Lee, F.D., Carcinogens Are Mutagens: A Simple Test System Combining Liver Homogenates for Activation and Bacteria for Detection, Proc. Natl. Acad. Sci. USA, 1973, vol. 70, no. 8, pp. 2281–2285.

    Article  PubMed  CAS  Google Scholar 

  15. Tyurin, Yu.N. and Makarov, A.A., Analiz dannykh na komp’yutere, (Computer Data Analysis), Figurnov, V.E., Ed., Moscow: Infra-M, 2003.

    Google Scholar 

  16. Deev, L.I., Akhalaia, M.I., Illarionova, E.A., and Kudriashov, I.B., Relation of Changes in the Content and Activity of Rat Liver Microsomal Cytochrome P-450 to the Intensification of Lipid Peroxidation under Stress, Byull. Eksp. Biol. Med., 1983, vol. 95, no. 5, pp. 51–53.

    Article  CAS  Google Scholar 

  17. Konstandi, M., Marselos, M., Radon-Camus, A.M., et al., The Role of Stress in the Regulation of Drug Metabolizing Enzymes in Mice, Eur. J. Drug Metab. Pharmacokinet., 1998, vol. 23, no. 4, pp. 483–490.

    Article  PubMed  CAS  Google Scholar 

  18. Konstandi, M., Johnson, E.O., Marselos, M., et al., Stress-Mediated Modulation of B(α)P-Induced Hepatic CYP1A1: Role of Catecholamines, Chem.-Biol. Interact., 2004, vol. 147, pp. 65–77.

    Article  PubMed  CAS  Google Scholar 

  19. Dimitroglou, E., Zafiropoulou, M., Messini-Nikolaki, N., et al., DNA Damage in a Human Population Affected by Chronic Psychogenic Stress, Int. J. Hyg. Environ. Health, 2003, vol. 206, no. 1, pp. 39–44.

    Article  PubMed  CAS  Google Scholar 

  20. Shimada, T., Hayes, C.L., Yamazaki, H., et al., Activation of Chemically Diverse Procarcinogens by Human Cytochrome P450 1B1, Cancer Res., 1996, vol. 56, no. 13, pp. 2979–2984.

    PubMed  CAS  Google Scholar 

  21. Oda, Y., Aryal, P., Terashita, T., et al., Metabolic Activation of Heterocyclic Amines and Other Procarcinogens in Salmonella typhimurium umu Tester Strains Expressing Human Cytochrome P4501A1, 1A2, 1B1, 2C9, 2D6, 2E1, and 3A4 and Human NADPH-P450 Reductase and Bacterial o-Acetyltransferase, Mutat. Res./Genet. Toxicol. Environ. Mutagenesis, 2001, vol. 492, nos. 1–2, pp. 81–90.

    Article  CAS  Google Scholar 

  22. Flint, M.S., Hood, B.L., Sun, M., et al., Proteomic Analysis of the Murine Liver in Response to a Combined Exposure to Psychological Stress and 7.12-Dimethylbenz(A)Anthracene, J. Proteome. Res., 2010, vol. 9, no. 1, pp. 509–520.

    Article  PubMed  CAS  Google Scholar 

  23. Borodin, P.M. and Belyaev, D.K., Effect of Emotional Stress on Recombination Frequency in Chromosome 1 of House Mouse, Dokl. Akad. Nauk SSSR, 1986, vol. 286, no. 3, pp. 726–728.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. S. Zhuk.

Additional information

Original Russian Text © A.S. Zhuk, E.I. Stepchenkova, A.V. Dukel’skaya, E.V. Daev, S.G. Inge-Vechtomov, 2011, published in Genetika, 2011, Vol. 47, No.10, pp. 1357–1363.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhuk, A.S., Stepchenkova, E.I., Dukel’skaya, A.V. et al. The role of metabolic activation of promutagens in the genome destabilization under pheromonal stress in the house mouse (Mus musculus). Russ J Genet 47, 1209–1214 (2011).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: