Russian Journal of Genetics

, 47:1078 | Cite as

Allelic variation at high-molecular-weight glutenin subunit loci in Aegilops biuncialis Vis.

  • N. A. Kozub
  • I. A. Sozinov
  • I. N. Xynias
  • A. A. Sozinov
Plant Genetics

Abstract

Alleles at the high-molecular-weight glutenin subunit loci Glu-U1 and Glu-Mb1 were analyzed in the tetraploid species Aegilops biuncialis (UUMbMb). The material for the investigation included the collection of 39 accessions of Ae. biuncialis from Ukraine (the Crimea), one Hellenic accession, one accession of unknown origin, F2 seeds from different crosses, as well as samples from natural populations from the Crimea. Ae. umbellulata and Ae. comosa accessions were used to allocate components of the HMW glutenin subunit patterns of Ae. biuncialis to U or Mb genomes. Eight alleles were identified at the Glu-U1 locus and ten alleles were revealed at the Glu-Mb1 locus. Among alleles at the Glu-Mb1 locus of Ae. biuncialis there were two alleles controlling the y-type subunit only and one allele encoding the x-subunit only.

References

  1. 1.
    Friebe, B., Raupp, W.J., and Gill, B.S., Alien Genes in Wheat Improvement, Wheat in a Global Environment, Proc. 6th Int. Wheat Conference, Budapest, Bedo, Z. and Lang, L., Eds., Dordrecht: Kluwer, 2001, pp. 709–720.Google Scholar
  2. 2.
    Hajjar, R. and Hodgkin, T., The Use of Wild Relatives in Crop Improvement: A Survey of Developments over the Last 20 Years, Euphytica, 2007, vol. 156, pp. 1–13.CrossRefGoogle Scholar
  3. 3.
    Schneider, A., Molnar, I., and Molnar-Lang, M., Utilization of Aegilops (Goatgrass) Species to Widen the Genetic Diversity of Cultivated Wheat, Euphytica, 2008, vol. 163, pp. 1–19.CrossRefGoogle Scholar
  4. 4.
    Payne, P.I., Genetics of Wheat Storage Proteins and the Effect of Allelic Variation on Bread-Making Quality, Annu. Rev. Plant Physiol., 1987, vol. 38, pp. 141–153.CrossRefGoogle Scholar
  5. 5.
    Brown, J.W.S., Kemble, R.J., Law, C.N., and Flavell, R.B., Control of Endosperm Proteins in Triticum aestivum (var. Chinese Spring) and Aegilops umbellulata by Homoeologous Group 1 Chromosomes, Genetics, 1979, vol. 93, pp. 189–200.PubMedGoogle Scholar
  6. 6.
    Lawrence, G.J. and Shepherd, K.W., Chromosomal Locations of Genes Controlling Seed Proteins in Species Related to Wheat, Theor. Appl. Genet., 1981, vol. 59, pp. 25–31.Google Scholar
  7. 7.
    Payne, P.I. and Lawrence, G., Catalogue of Alleles for the Complex Gene Loci, Glu-A1, Glu-B1, Glu-D1 Which Code for High-Molecular-Weight Subunits of Glutenin in Hexaploid Wheat, Cereal Res. Commun., 1983, vol. 11, pp. 29–34.Google Scholar
  8. 8.
  9. 9.
    Lagudah, E.S. and Halloran, G.M., Phylogenetic Relationships of Triticum tauschii the D Genome Donor to Hexaploid Wheat: 1. Variation in HMW Subunits of Glutenin and Gliadins, Theor. Appl. Genet., 1988, vol. 75, pp. 592–598.CrossRefGoogle Scholar
  10. 10.
    Gianibelli, M.C., Gupta, R.B., Lafiandra, D., et al., Polymorphism of High Molecular Glutenin Subunits in Triticum tauschii: Characterization by Chromatography and Electrophoretic Methods, J. Cereal Sci., 2001, vol. 33, pp. 39–52.CrossRefGoogle Scholar
  11. 11.
    Rodriguez-Quijano, M., Nieto-Taladriz, M.T., and Carrillo, J.M., Polymorphism of High Molecular Weight Glutenin Subunits in Three Species of Aegilops, Genet. Resour. Crop Evol., 2001, vol. 48, pp. 599–607.CrossRefGoogle Scholar
  12. 12.
    Fernandez-Calvin, B. and Orellana, J., High Molecular Weight Glutenin Subunit Variation in the Sitopsis Section of Aegilops: Implications for the Origin of the B Genome of Wheat, Heredity, 1990, vol. 65, pp. 455–463.CrossRefGoogle Scholar
  13. 13.
    Tsvelev, N.N., Zlaki SSSR (Grasses of the Soviet Union), Leningrad: Nauka, 1976.Google Scholar
  14. 14.
    Kimber, G. and Feldman, M., Wild Wheat: An Introduction, Special Report 353, College of Agriculture Univ. Missouri, 1987.Google Scholar
  15. 15.
    Boguslavskii, R.L. and Golik, O.V., Aegilops L. kak geneticheskii resurs selektsii (Aegilops L. as a Genetic Resource for Breeding), Kharkov, 2004.Google Scholar
  16. 16.
    Wang, G.Z., Miyashita, N., and Tsunevaki, K., Plasmon Analyses of Triticum (Wheat) and Aegilops: PCR-Single-Strand Conformational Polymorphism (PCR-SSCP) Analyses of Organellar DNAs, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 14570–14577.PubMedCrossRefGoogle Scholar
  17. 17.
    Laemmli, U.K., Cleavage of Structural Proteins during Assembly of the Head of Bacteriophage, Nature, 1970, vol. 227, pp. 680–685.PubMedCrossRefGoogle Scholar
  18. 18.
    Rokitskii, P.F., Biologicheskaya statistika (Biological Statistics), Minsk: Vysheishaya shkola, 1973.Google Scholar
  19. 19.
    Liu, Z., Yan, Z., Wan, Y., et al., Analysis of HMW Sub-units and Their Coding Sequences in Two Diploid Aegilops Species, Theor. Appl. Genet., 2003, vol. 106, pp. 1368–1378.PubMedGoogle Scholar
  20. 20.
    De Bustos, A. and Jouve, N., Characterization and Phylogenetic Analysis of the Genes Coding for High Molecular Weight Glutenin Subunits in Three Diploid Species of Aegilops, Int. J. Plant Sci., 2006, vol. 167, pp. 359–366.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. A. Kozub
    • 1
    • 2
  • I. A. Sozinov
    • 1
  • I. N. Xynias
    • 3
    • 4
  • A. A. Sozinov
    • 1
    • 2
  1. 1.Institute of Plant ProtectionNational Academy of Agrarian Sciences of UkraineKyivUkraine
  2. 2.Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyivUkraine
  3. 3.NAGREF-Cereal InstituteThessalonikiGreece
  4. 4.Plant Production Department, School of Agricultural TechnologyT.E.I. of KalamataAntikalamasKalamata, Greece

Personalised recommendations