Russian Journal of Genetics

, Volume 47, Issue 7, pp 770–774 | Cite as

Study of genotoxicity and antigenotoxicity of the Cotinus coggygria Scop. methanol extract by Drosophila melanogaster sex-linked recessive lethal test

  • S. StanićEmail author
  • S. Matić
  • G. Đelić
  • M. Mihailović
  • D. Bogojević
  • S. Solujić
General Genetics


The genotoxic and antigenotoxic effects of Cotinus coggygria Scop. methanol extract was investigated using the Drosophila sex-linked recessive lethal (or SLRL) test. The results presented here show that the methanol extract of Cotinus coggygria in a concentration of 5% and artificial chemical agent ethyl methanesulfonate EMS (0.75 ppm) induce recessive lethal mutations on X-chromosome on Drosophila melanogaster in all broods (I, II and III). Post-treatment with lower concentration of the methanol extract of Cotinus coggygria (2%) was effective in reducing genotoxicity of mutagen.


Gallic Acid Methanol Extract Oleu Ropein Ethyl Methane Sulfonate Methyl Gallate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Compositions and Methods of Inducing Hair Growth Utilizing Cotinus coggygria, Patent Application Publication US 2010/0221364 A1.Google Scholar
  2. 2.
    Demirci, B., Demirci, F., and Baser, K.H., Composition of the Essential Oil of Cotinus coggygria (Scop.) from Turkey, Flavour. Fragr. J., 2003, vol. 18, pp. 43–44.CrossRefGoogle Scholar
  3. 3.
    Ivanova, D., Gerova, D., Chervenkov, T., and Yankova, T., Polyphenols and Antioxidant Capacity of Bulgarian Medicinal Plants, J. Ethnopharmacol., 2005, vol. 96, pp. 145–150.PubMedCrossRefGoogle Scholar
  4. 4.
    Ingestible Compositions Containing Extract, Patent No. US 7,754,248 B2.Google Scholar
  5. 5.
    Grieve, M.A., Modern Herbal, New York: Dover, 1971.Google Scholar
  6. 6.
    Cunha, K.S., Campesato, V.R., Reguly, M.L., et al., Tannic Acid is not Mutagenic in Germ Cells but Weakly Genotoxic in Somatic Cells of Drosophila melanogaster, Mutagenesis, 1995, vol. 10, no. 4, pp. 291–295.PubMedCrossRefGoogle Scholar
  7. 7.
    Stathopoulou, K., Magitis, P., Karapanigiotis, I., et al., Phytochemical Analysis of Cotinus coggygria Heartwood: Identification of Isolated Colorants in Historical Art Objects, (Proc. of the 55th Int. Congres and Annu. Meeting of the Soc. for Med. Plant Res., Austria), Planta Med., 2007, vol. 73, p. 163.CrossRefGoogle Scholar
  8. 8.
    Valianou, L., Stathopoulou, K., Karapanagiotis, I., et al., Phytochemical Analysis of Young Fustic (Cotinus coggygria Heartwood) and Identification of Isolated Colourants in Historical Textiles, Anal. Bioanal. Chem., 2009, vol. 394, no. 3, pp. 871–872.PubMedCrossRefGoogle Scholar
  9. 9.
    Puupponen-Pimia, R., Nohynek, L., Meier, C., et al., Antimicrobial Properties of Phenolic Compounds from Berries, J. Appl. Microbiol., 2001, vol. 90, no. 4, pp. 494–507.PubMedCrossRefGoogle Scholar
  10. 10.
    Novaković, M., Vuković, I., Janacković, P., et al., Chemical Composition, Antibacterial and Antifungal Activity of the Essential Oils of Cotinus coggygria from Serbia, J. Serb. Chem. Soc., 2007, vol. 72, no. 11, pp. 1045–1051.CrossRefGoogle Scholar
  11. 11.
    Westenburg, H.E., Lee, K.J., Lee, S.K., et al., Activity-Guided Isolation of Antioxidative Constituents of Cotinus coggygria, J. Nat. Prod., 2000, vol. 63, no. 12, pp. 1696–1698.PubMedCrossRefGoogle Scholar
  12. 12.
    Borchardt, J.R., Wyse, D.L., Sheaffer, C.C., et al., Antimicrobial Activity of Native and Naturalized Plants of Minnesota and Wisconsin, J. Med. Plants Res., 2008, vol. 2, no. 5, pp. 98–110.Google Scholar
  13. 13.
    Kilbey, B.J., Legator, M., Nichols, W., and Ramel, C., Handbook of Mutagenicity Test Procedures, Amsterdam: Elsevier, 1984.Google Scholar
  14. 14.
    Lee, W.R., Abrahamson, S., Valencie, R., et al., The Sex-Linked Recessive Lethal Test for Mutagenesis in Drosophila melanogaster: A Report of the US Environmental Protection Agency Gene-Tox Program, Mutat. Res., 1983, vol. 123, pp. 183–279.PubMedGoogle Scholar
  15. 15.
    Lewis, E.B. and Bacher, F., Method of Feeding Ethyl Methane Sulfonate (EMS) to Drosophila Males, Drosophila Inform. Serv., 1968, vol. 43, p. 193.Google Scholar
  16. 16.
    Petz, B., Basic Statistical Method for Non-Mathematical Use, Zagreb: SNL, 1985.Google Scholar
  17. 17.
    Dauer, A., Hensel, A., Lhoste, E., et al., Genotoxic and Antigenotoxic Effects of Catechin and Tannins from the Bark of Hamamelis virginiana L. in Metabolically Component, Human Hepatoma Cells (Hep G2) Using Single Cell Gel Electrophoresis, Phytochemistry, 2003, vol. 63, pp. 199–207.PubMedCrossRefGoogle Scholar
  18. 18.
    Stanić, S., Matić, S., Solujić, S., and Miloević, T., Genotoxicity Testing of the Methanol Extract of the Plant Cotinus coggygria and Gallic Acid on Drosophila melanogaster, Arch. Biol. Sci., 2009, vol. 61, no. 2, pp. 261–266.CrossRefGoogle Scholar
  19. 19.
    Birosová, L., Mikulasová, M., and Vaverková, S., Antimutagenic Effect of Phenolic Acids, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Chech. Repub., 2005, vol. 149, no. 2, pp. 489–491.Google Scholar
  20. 20.
    Hajjouji, H.E., Pinelli, E., Guiresse, M., et al., Assement of the Genotoxicity of Olive Mill Waste Water (OMWW) with the Vicia faba Micronucleus Test, Mutat. Res.-Gen. Toxical. Environ Mutagen., 2007, vol. 634, nos. 1–2, pp. 25–31.CrossRefGoogle Scholar
  21. 21.
    Loveless, A., Increased Rate of Plaque-Type and Host-Range Mutation Following Treatment of Bacteriophage in vitro with Ethyl Methanesulphonate, Nature, 1958, vol. 181, pp. 1212–1213.PubMedCrossRefGoogle Scholar
  22. 22.
    Schwartz, N.M., Nature of Ethyl Methanesulphonate Induced Reversions of Lac-Mutants of Escherichia coli, Genetics, 1963, vol. 48, pp. 1357–1375.PubMedGoogle Scholar
  23. 23.
    Roebbelen, G., Wirkungsvergleich zwischen Thylmethansulfonat und Roentgenstrahlen im Mutationsversuch mit Arabidopsis thaliana, Naturwissenschaften, 1962, vol. 49, no. 3, p. 65.CrossRefGoogle Scholar
  24. 24.
    Ghatnekar, M.R., Primary Effects of Different Mutagens and the Disturbances Induced in the Meiosis of X and X2 of Vicia faba, Caryologia, 1964, vol. 17, pp. 219–244.Google Scholar
  25. 25.
    Drablos, F., Feyzi, E., Aas, P.M., et al., Alkylation Damage in DNA and RNA-Repair Mechanisms and Medical Significance, DNA Rep., 2004, vol. 3, pp. 1389–1407.CrossRefGoogle Scholar
  26. 26.
    Veld, C.W.O., Zdzienicka, M.Z., Vrieling, H., et al., Molecular Analysis of Ethyl Methanesulfonate-Induced Mutations at the hprt Gene in the Ethyl Methanesulfonate-Sensitive Chinese Hamster Cell Line EM-Cl and Its Parental Line CHO9, Cancer Res., 1994, vol. 54, pp. 3001–3006.Google Scholar
  27. 27.
    Fedeli, D., Berrettini, M., Gabryelak, T., and Falcioni, G., The Effect of Some Tannins on Trout Erythrocytes Exposed to Oxidative Stress, Mutat. Res., 2004, vol. 563, pp. 89–96.PubMedGoogle Scholar
  28. 28.
    Graf, U., Abraham, S.K., Guzman-Rincon, J., and Wuergler, F.E., Antigenotoxicity Studies in Drosophila melanogaster, Mutat. Res., 1998, vol. 402, pp. 203–209.PubMedGoogle Scholar
  29. 29.
    Ishaq, G.M., Shah, M.Y., and Tanki, S.A., Cancer Chemoprevention through Natural Antimutagenic Agents, JK-Practitioner: Internat. J. Cur. Med. Sci. and Practice, 2003, vol. 10, no. 2, pp. 101–106.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • S. Stanić
    • 1
    Email author
  • S. Matić
    • 1
  • G. Đelić
    • 1
  • M. Mihailović
    • 2
  • D. Bogojević
    • 2
  • S. Solujić
    • 3
  1. 1.Department of Biology and Ecology, Faculty of ScienceUniversity of KragujevacKragujevacSerbia
  2. 2.Department of Molecular Biology, Institute for Biological ResearchUniversity of BelgradeBelgradeSerbia
  3. 3.Department of Chemistry, Faculty of ScienceUniversity of KragujevacKragujevacSerbia

Personalised recommendations