Skip to main content
Log in

Role of constitutive and inducible repair in radiation resistance of Escherichia coli

  • Microbial Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Radiation resistance of Escherichia coli cells depends on how efficiently DNA is recovered after damage, which is determined by the function of constitutive and inducible repair branches. The effects of additional mutations of the key genes of constitutive and inducible repair (recA, lexA, recB, polA, lig, gyr, recF, recO, recR, recJ, recQ, uvrD, helD, recN, and ruv) on radiation resistance were studied in E. coli K-12 strain AB1157 and highly radiation-resistant isogenic strain Gamr444. An optimal balance ensuring a high γ resistance of the Gamr444 radiation-resistant E. coli mutant was due to expression of the key SOS repair genes (recA, lexA, recN, and ruv) and activation of the presynaptic functions of the RecF homologous recombination pathway as a result of a possible mutation of the uvrD gene, which codes for repair helicase II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedberg, E.C., Walker, G.C., and Siede, W., DNA Repair and Mutagenesis, Washington, DC: ASM Press, 1995.

    Google Scholar 

  2. Courcelle, J., Khodursky, A., Peter, B., et al., Comparative Gene Expression Profiles Following UV Exposure in Wild-Type and SOS-Deficient Escherichia coli, Genetics, 2001, vol. 158, no. 1, pp. 41–64.

    PubMed  CAS  Google Scholar 

  3. Verbenko, V.N., Kuznetsova, L.V., Krup’yan, E.P., and Suslov, A.V., Operator-Constitutive Mutation in the recA Gene Enhances Radiation Resistance of Escherichia coli, Russ. J. Genet., 2009, vol. 45, no. 8, pp. 917–923.

    Article  CAS  Google Scholar 

  4. Bi, E. and Lutkenhaus, J., Cell Division Inhibitors SulA and MinCD Prevent Formation of the FtsZ Ring, J. Bacteriol., 1993, vol. 175, no. 4, pp. 1118–1125.

    PubMed  CAS  Google Scholar 

  5. Verbenko, V.N., Kuznetsova, L.V., Luchkina, L.A., et al., Mutation in the cspH-cspG Gene Cluster Enhances Expression of Heat-Shock Proteins and SOS Repair System of Escherichia coli, Russ. J. Genet., 2009, vol. 45, no. 9, pp. 1047–1054.

    Article  CAS  Google Scholar 

  6. Slade, D., Lindner, A.B., Paul, G., et al., Recombination and Replication in DNA Repair of Heavily Irradiated Deinococcus radiodurans, Cell, 2009, vol. 136, no. 6, pp. 1044–1055.

    Article  PubMed  CAS  Google Scholar 

  7. Bresler, S.E., Verbenko, V.N., and Kalinin, V.L., Escherichia coli K-12 Mutants with Enhanced Resistance to Ionizing Radiation: I. Isolation and Cross-Resistance to Various Agents, Genetika (Moscow), 1980, vol. 16, no. 11, pp. 1754–1763.

    Google Scholar 

  8. Clark, A.J., Recombination Deficient Mutants of E. coli and Other Bacteria, Ann. Rev. Genet., 1973, vol. 7, pp. 67–86.

    Article  PubMed  CAS  Google Scholar 

  9. Krueger, J.H., Elledge, S.J., and Walker, G.C., Isolation and Characterization of Tn5 Insertion Mutations in the lexA Gene of Escherichia coli, J. Bacteriol., 1983, vol. 153, no. 3, pp. 1368–1378.

    PubMed  CAS  Google Scholar 

  10. Csonka, L.N. and Clark, A.J., Construction of an Hfr Strain Useful for Transferring recA Mutations between Escherichia coli Strains, J. Bacteriol., 1980, vol. 143, no. 1, pp. 529–530.

    PubMed  CAS  Google Scholar 

  11. Willetts, N.S., Clark, A.J., and Low, B., Genetic Location of Certain Mutations Conferring Recombination Deficiency in Escherichia coli, J. Bacteriol., 1969, vol. 97, no. 1, pp. 244–249.

    PubMed  CAS  Google Scholar 

  12. Bachmann, B.J., Derivations and Genotypes of Some Mutant Derivatives of Escherichia coli K-12, Escherichia coli and Salmonella typhimunum Cellular and Molecular Biology, Neidhardt, F.C., Ingraham, J.L., and Low, K.B., Eds., Washington, DC: American Society for Microbiology, 1987, pp. 1190–1219.

    Google Scholar 

  13. Smirnov, G.B., Filkova, E.V., Skavronskaya, A.G., et al., Loss and Restoration of Viability of E. coli Due to Combinations of Mutations Affecting DNA Polymerase I and Repair Activities, Mol. Gen. Genet., 1973, vol. 121, no. 2, pp. 139–150.

    Article  PubMed  CAS  Google Scholar 

  14. Clark, A.J., The Beginning of a Genetic Analysis of Recombination Proficiency, J. Cell Physiol., 1967, vol. 70,suppl., no. 1, pp. 165–180.

    Article  PubMed  Google Scholar 

  15. Wright, A. and Bridges, B.A., Effect of gyrB-Mediated Changes in Chromosome Structure on Killing of Escherichia coli by Ultraviolet Light: Experiments with Strains Differing in Deoxyribonucleic Acid Repair Capacity, J. Bacteriol., 1981, vol. 146, no. 1, pp. 18–23.

    Google Scholar 

  16. Seeberg, E., Rupp, W.D., and Strike, P., Impaired Incision of Ultraviolet-Irradiated Deoxyribonucleic Acid in uvrC Mutants of Escherichia coli, J. Bacteriol., 1980, vol. 144, no. 1, pp. 97–104.

    PubMed  CAS  Google Scholar 

  17. Rothman, R.H. and Clark, A.J., The Dependence of Postreplication Repair on uvrB in a recF Mutant of Escherichia coli K-12, Mol. Gen. Genet., 1977, vol. 155, no. 3, pp. 279–286.

    Article  PubMed  CAS  Google Scholar 

  18. Kolodner, R., Fishel, R.A., and Howard, M., Genetic Recombination of Bacterial Plasmid DNA: Effect of RecF Pathway Mutations on Plasmid Recombination in Escherichia coli, J. Bacteriol., 1985, vol. 163, no. 3, pp. 1060–1066.

    PubMed  CAS  Google Scholar 

  19. Yeung, T., Mullin, D.A., Chen, K.S., et al., Sequence and Expression of the Escherichia coli recR Locus, J. Bacteriol., 1990, vol. 172, no. 10, pp. 6042–6047.

    PubMed  CAS  Google Scholar 

  20. Nakayama, H., Nakayama, K., Nakayama, R., et al., Isolation and Genetic Characterization of a Thymineless Death-Resistant Mutant of Escherichia coli K12: Identification of a New Mutation (recQ1) That Blocks the RecF Recombination Pathway, Mol. Gen. Genet., 1984, vol. 195, no. 3, pp. 474–480.

    Article  PubMed  CAS  Google Scholar 

  21. Maples, V.F. and Kushner, S.R., DNA Repair in Escherichia coli: Identification of the uvrD Gene Product, Proc. Natl. Acad. Sci. USA, 1982, vol. 79, pp. 5616–5620.

    Article  PubMed  CAS  Google Scholar 

  22. Picksleys, S.M., Attfield, P.V., and Lloyd, R.G., Repair of DNA Double-Strand Breaks in Escherichia coli K12 Requires a Functional recN Product, Mol. Gen. Genet., 1984, vol. 195, pp. 267–274.

    Article  Google Scholar 

  23. Ryder, L., Whitby, M.C., and Lloyd, R.G., Mutation of recF, recJ, recO, recQ, or recR Improves Hfr Recombination in Resolvase-Deficient ruv recG Strains of Escherichia coli, J. Bacteriol., 1994, vol. 176, no. 6, pp. 1570–1577.

    PubMed  CAS  Google Scholar 

  24. Shurvinton, E., Lloyd, R.G., Benson, F.E., et al., Genetic Analysis and Molecular Cloning of the Escherichia coli ruv Gene, Mol. Gen. Genet., 1984, vol. 194, pp. 322–329.

    Article  PubMed  CAS  Google Scholar 

  25. Miller, J., A Short Course in Bacterial Genetics, Cold Spring Harbor: Cold Spring Harbor Laboratory, 1992, 2nd ed.

    Google Scholar 

  26. Moseley, B.E.B. and Copland, H.J.R., Isolation and Properties of a Recombination-Deficient Mutant of Micrococcus radiodurans, J. Bacteriol., 1975, vol. 122, no. 2, pp. 422–428.

    Google Scholar 

  27. Krisch, R.E., Flick, M.B., and Trumbore, C.N., Radiation Chemical Mechanisms of Single- and Double-Strand Break Formation in Irradiated SV40 DNA, Radiat. Res., 1991, vol. 126, no. 2, pp. 251–259.

    Article  PubMed  CAS  Google Scholar 

  28. Howard-Flanders, P., Theriot, L., and Stedeford, J.B., Some Properties of Excision-Defective Recombination-Deficient Mutants of Escherichia coli K-12, J. Bacteriol., 1969, vol. 97, no. 3, pp. 1134–1141.

    PubMed  CAS  Google Scholar 

  29. Bresler, S.E., Verbenko, V.N., and Kalinin, V.L., Mutants of Escherichia coli K-12 with Enhanced Resistance to Ionizing Radiation: III. Influence of rec and lexA Mutations on Radioresistance, Genetika (Moscow), 1984, vol. 20, no. 5, pp. 746–755.

    PubMed  CAS  Google Scholar 

  30. Kogoma, T., Stable DNA Replication: Interplay between DNA Replication, Homologous Recombination, and Transcription, Microbiol. Mol. Biol. Rev., 1997, vol. 61, no. 2, pp. 212–238.

    PubMed  CAS  Google Scholar 

  31. Glickman, B.W. and Rutgers, T., The Influence of the polA1 Mutation upon Recombination in Escherichia coli K12, Can. J. Genet. Cytol., 1979, vol. 21, no. 3, pp. 423–428.

    PubMed  CAS  Google Scholar 

  32. Nowosielska, A., Calmann, M.A., Zdraveski, Z., et al., Spontaneous and Cisplatin-Induced Recombination in Escherichia coli, DNA Repair, 2004, vol. 3, no. 7, pp. 719–728.

    Article  PubMed  CAS  Google Scholar 

  33. Zieg, J., Maples, V.F., and Kushner, S.R., Recombinant Levels of Escherichia coli K-12 Mutants Deficient in Various Replication, Recombination, or Repair Genes, J. Bacteriol., 1978, vol. 134, no. 3, pp. 958–966.

    PubMed  CAS  Google Scholar 

  34. Wang, J.C., DNA Topoisomerases, Annu. Rev. Biochem., 1996, vol. 65, pp. 635–692.

    Article  PubMed  CAS  Google Scholar 

  35. Drlica, K. and Zhao, X., DNA Gyrase, Topoisomerase IV, and the 4-Quinolones, Microbiol. Mol. Biol. Rev., 1997, vol. 61, no. 3, pp. 377–392.

    PubMed  CAS  Google Scholar 

  36. Krisch, R.E., Krasin, F., and Sauri, C.J., DNA Breakage, Repair and Lethality after 125I Decay in rec + and recA Strains of Escherichia coli, Int. J. Radiat. Biol., 1976, vol. 29, no. 1, pp. 37–50.

    Article  CAS  Google Scholar 

  37. Minton, K.W., Repair of Ionizing-Radiation Damage in the Radiation Resistant Bacterium Deinococcus radiodurans, Mutat. Res., 1996, vol. 363, no. 1, pp. 1–7.

    PubMed  Google Scholar 

  38. Morimatsu, K. and Kowalczykowski, S.C., RecFOR Proteins Load RecA Protein onto Gapped DNA to Accelerate DNA Strand Exchange: A Universal Step of Recombinational Repair, Mol. Cell, 2003, vol. 11, no. 5, pp. 1337–1347.

    Article  PubMed  CAS  Google Scholar 

  39. Cox, M.M., Recombinational DNA Repair in Bacteria and the RecA Protein, Progr. Nucleic Acids Res. Mol. Biol., 2000, vol. 63, pp. 311–366.

    CAS  Google Scholar 

  40. Verbenko, V.N., Krupyan, E.P., Shevelev, I.V., et al., Constitutive Inhibition of RecBCD-Mediated DNA Degradation in the Escherichia coli K-12 Radiation-Resistant Mutant Gamr444 Russ. J. Genet., 1999, vol. 35, no. 4, pp. 358–363.

    CAS  Google Scholar 

  41. Verbenko, V.N., Krupyan, E.P., Kuznetsova, L.V., and Kalinin, V.L., Mutant Allele gaml8 Involved in the RecF Repair Pathway of Escherichia coli K-12 Russ. J. Genet., 1999, vol. 35, no. 3, pp. 244–248.

    CAS  Google Scholar 

  42. Meddows, T.R., Savory, A.P., Grove, J.I., et al., RecN Protein and Transcription Factor DksA Combine to Promote Faithful Recombinational Repair of DNA Double-Strand Breaks, Mol. Microbiol., 2005, vol. 57, no. 1, pp. 97–110.

    Article  PubMed  CAS  Google Scholar 

  43. West, S.C., Processing of Recombination Intermediates by the Ruv-ABC Proteins, Ann. Rev. Genet., 1997, vol. 31, pp. 213–244.

    Article  PubMed  CAS  Google Scholar 

  44. Tuteja, R. and Tuteja, N., Serial Analysis of Gene Expression (SAGE): Unraveling the Bioinformatics Tools, BioEssays, 2004, vol. 26, no. 8, pp. 916–922.

    Article  PubMed  CAS  Google Scholar 

  45. Petranovi, M., Zahradka, K., Zahradka, D., et al., Genetic Evidence That the Elevated Levels of Escherichia coli Helicase II Antagonize Recombinational DNA Repair, Biochimie, 2001, vol. 83, nos. 11–12, pp. 1041–1047.

    Article  Google Scholar 

  46. Veaute, X., Delmas, S., Selva, M., et al., UvrD Helicase, Unlike Rep Helicase, Dismantles RecA Nucleoprotein Filaments in Escherichia coli, EMBO J., 2005, vol. 24, no. 1, pp. 180–189.

    Article  PubMed  CAS  Google Scholar 

  47. Makarova, K.S., Aravind, L., Wolf, Y.I., et al., Genome of the Extremely Radiation-Resistant Bacterium Deinococcus radiodurans Viewed from the Perspective of Comparative Genomics, Microbiol. Mol. Biol. Rev., 2001, vol. 65, pp. 44–79.

    Article  PubMed  CAS  Google Scholar 

  48. Sghaier, H., Ghedira, K., Benkahla, A., et al., Basal DNA Repair Machinery Is Subject to Positive Selection in Ionizing-Radiation-Resistant Bacteria, BMC Genomics, 2008, vol. 9, pp. 297–303.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Verbenko.

Additional information

Original Russian Text © E.P. Goulevich, L.V. Kuznetsova, V.N. Verbenko, 2011, published in Genetika, 2011, Vol. 47, No. 7, pp. 879–889.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goulevich, E.P., Kuznetsova, L.V. & Verbenko, V.N. Role of constitutive and inducible repair in radiation resistance of Escherichia coli . Russ J Genet 47, 775–784 (2011). https://doi.org/10.1134/S1022795411070076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795411070076

Keywords

Navigation