Skip to main content

Transcriptional interactions during barley susceptible genotype infection with Cochliobolus sativus

Abstract

A systematic sequencing of expressed sequence tags (ESTs) was used to obtain a global picture of the assembly of barley genes differentially expressed during the hypersensitive reaction of a susceptible genotype in response to an incompatible Cochliobolus sativus pathovar. To identify a large number of plant ESTs, which are induced at different time points, an amplified fragment length polymorphism (AFLP) display of complementary DNA (cDNA) was ulilized. Significant transcriptional changes in the host plant occurred already 4 h post inoculation. Four hundred and fifty six ESTs have been generated, of which 17 (c. 53% up-regulated, 47% down-regulated) have no previously described function. On one hand, the majority of EST-annotations showed protein synthesis, but genes related to signal transduction pathway were also identified. This study provides novel global catalogue of gene regulations involved in C. sativus-barley interaction not currently represented in EST databases.

This is a preview of subscription content, access via your institution.

References

  1. Kumar, J., Schafer, P., Huckelhoven, R., et al., Bipolaris sorokiniana, a Cereal Pathogen of Global Concern: Cytological and Molecular Approaches towards Better Control, Mol. Plant Pathol., 2002, vol. 3, pp. 185–195.

    PubMed  Article  CAS  Google Scholar 

  2. Schaefer, P., Hueckelhoven, R., and Kogel, K.H., The White Barley Mutant albostrians Shows a Super Susceptible but Symptomless Interaction Phenotype with the Hemibiotrophic Fungus Bipolaris sorokiniana, Mol. Plant-Microbe Interact., 2004, vol. 17, pp. 366–373.

    Article  CAS  Google Scholar 

  3. Yadav, B.S., Behavior of Cochliobolus sativus during Its Infection of Barley and Wheat Leaves, Austral. J. Bot., 1981, vol. 29, pp. 71–79.

    Article  Google Scholar 

  4. Arabi, M.I.E. and Jawhar, M., Identification of Cochliobolus sativus (Spot Blotch) Isolates Expressing Differential Virulence on Barley Genotypes in Syria, J. Phytopathol., 2004, vol. 152, pp. 461–464.

    Article  Google Scholar 

  5. Ghazvini, H. and Tekauz, A., Host Pathogen Interactions among Barley Genotypes and Bipolaris sorokiniana Isolates. Plant Dis., 2008, vol. 92, pp. 225–233.

    Article  Google Scholar 

  6. Santen, K., Pathogenesis-Related Proteins in Barley: Localization and Accumulation Patterns in Response to Infection by Bipolaris sorokiniana, Doctoral dissertation, ISBN, 2007, vol. 5, pp. 576.

    Google Scholar 

  7. Al-Daoude, A. and Jawhar, M., Transcriptional Changes in Barley-Cochliobolus sativus Interaction. Austral. Plant Pathol., 2009, vol. 38, pp. 1–5.

    Article  Google Scholar 

  8. Hueckelhoven, R., Dechert, C., Trujillo, M., and Kogel, K.H., Differential Expression of Putative Cell Death Regulator Genes in Near-Isogenic, Resistant and Susceptible Barley Lines during Interaction with the Powdery Mildew Fungus, Plant Mol. Biol., 2001, vol. 47, pp. 739–748.

    Article  Google Scholar 

  9. Wendy, E.D., Rowland, O., Piedras, P., et al., cDNA-AFLP Reveals a Striking Overlap in Race-Specific Resistance and Wound Response Gene Expression Profiles, Plant Cell, 2000, vol. 12, pp. 963–977.

    Google Scholar 

  10. Polesani, M., Desario, F., Ferrarini, A., et al., cDNA-AFLP Analysis of Plant and Pathogen Genes Expressed in Grapevine Infected with Plasmopara viticola, BMC Genomics, 2008, vol. 9, pp. 142–147.

    PubMed  Article  Google Scholar 

  11. Bachem, C.W., van der Hoeven, R.S., de Bruijn, S.M., et al., Visualization of Differential Gene Expression Using a Novel Method of RNA Fingerprinting Based on AFLP: Analysis of Gene Expression during Potato Tuber Development, Plant J., 1996, vol. 9, pp. 745–753.

    PubMed  Article  CAS  Google Scholar 

  12. Arabi, M.I.E. and Jawhar, M., Pathotypes of Cochliobolus sativus (Spot Blotch) on Barley in Syria. J. Plant Pathol., 2003, vol. 85, pp. 193–196.

    Google Scholar 

  13. Arabi, M.I.E. and Jawhar, M., Molecular and Pathogenic Variation Identified among Isolates of Cochliobolus sativus, Austral. Plant Pathol., 2007, vol. 36, pp. 17–21.

    Article  CAS  Google Scholar 

  14. Breyne, P., Dreesen, R., and Vandepoele, K., Transcriptome Analysis during Cell Division in Plants, Proc. Natl Acad. Sci. USA, 2002, vol. 99, pp. 14825–14830.

    PubMed  Article  CAS  Google Scholar 

  15. Wisniewska, H., Wakulinski, W., and Chelkowski, J., Susceptibility of Barleys to Bipolaris sorokiniana Seedling Blight Determined by Disease Scoring and Electrolyte, J. Phytopathol., 1998, vol. 146, pp. 563–566.

    Article  Google Scholar 

  16. Kortekamp, A., Wind, R., and Zyprian, E., Investigation of the Interaction of Plasmopara viticola with Susceptible and Resistant Genotypes, J. Plant Dis. Protect., 1998, vol. 105, pp. 475–488.

    Google Scholar 

  17. Kiefer, B., Riemann, M., Buche, C., et al., The Host Guides Morphogenesis and Stomatal Targeting in the Grapevine Pathogen Plasmopara viticola, Planta, 2002, vol. 215, pp. 387–393.

    PubMed  Article  CAS  Google Scholar 

  18. Yokota, E., McDonald, A.R., Liu, B., et al., Localization of a 170kDa Myosin Heavy Chain in Plant Cells, Protoplasma, 1995, vol.185, pp. 178–187.

    Article  CAS  Google Scholar 

  19. Schmelzer, E., Cell Polarization, a Crucial Process in Fungal Defense, Trends Plant Sci., 2002, vol. 7, pp. 411–415.

    PubMed  Article  CAS  Google Scholar 

  20. Veronese, P., Ruiz, M.T., Coca, M.A., et al., Defense against Pathogens: Both Plant Sentinels and Foot Soldiers Need to Know the Enemy, Plant Physiol., 2003, vol.131, pp. 1580–1590.

    PubMed  Article  CAS  Google Scholar 

  21. Lipka, V. and Panstruga, R., Dynamic Cellular Responses in Plant-Microbe Interactions, Curr. Op. Plant Biol., 2005, vol. 8, pp. 525–631.

    Article  Google Scholar 

  22. Fung, R.W., Gonzalo, M., Fekete, C., et al., Powdery Mildew Induces Defense-Oriented Reprogramming of the Transcriptome in a Susceptible but not in a Resistant Grapevine, Plant Physiol., 2008, p. 146, pp. 236–249.

    PubMed  Article  CAS  Google Scholar 

  23. Narasimhan, M.L., Damsz, B., Coca, M.A., et al., A Plant Defense Response Effectors Induces Microbial Apoptosis, Mol. Cell, 2001, vol. 8, pp. 921–930.

    PubMed  Article  CAS  Google Scholar 

  24. Hueckelhoven, R., Dechert, C., and Kogel, K.H., Overexpression of Barley BAX Inhibitor-1 Induces Breakdown of mlo-Mediated Penetration Resistance to Blumeria graminis, Proc. Natl. Acad. Sci. USA, 2003, vol.100, pp. 5555–5560.

    Article  Google Scholar 

  25. Jarosch, B., Kogel, K.H., and Schaffrath, U., The Ambivalence of the Barley Mlo Locus: Mutations Conferring Resistance against Powdery Mildew (Blumeria graminis f. sp. hordei) Enhance Susceptibility to the Rice Blast Fungus Magnaporthe grisea, Mol. Plant-Microbe Interact., 1999, vol. 12, pp. 508–514.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shoaib.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arabi, M.I.E., Al-Daoude, A., Shoaib, A. et al. Transcriptional interactions during barley susceptible genotype infection with Cochliobolus sativus . Russ J Genet 47, 879–883 (2011). https://doi.org/10.1134/S1022795411070027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795411070027

Keywords

  • Amplify Fragment Length Polymorphism
  • Powdery Mildew
  • Spot Blotch
  • Resistant Spot Blotch
  • cDNA Amplify Fragment Length Polymorphism