Skip to main content
Log in

Genetic variation and clonal diversity of Bromus ircutensis Kom. in the Otingdag sandy land detected by ISSR markers

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genetic variation and clonal diversity of nine populations of Bromus ircutensis Kom. from the Otingdag sandy land were investigated using Inter Simple Sequence Repeat (ISSR) markers. A total of 102 bands were amplified by using 11 ISSR primers chosen for the study. Among those 99% were polymorphic indicating high level of genetic variation at the species level with a mean genetic diversity (H) of 0.292 and Shannon information index (I) of 0.450. Percentage of polymorphic loci (PPL) of nine populations was 76.48% on average, which provides more evidence of considerable genetic variation at the population level. AMOVA analysis revealed that total genetic variation was higher within populations (87.06%) than between populations (12.94%), which is mainly the result of the extensive gene flow (Nm = 1.682) among B. ircutensis populations. UPGMA cluster analysis divided the nine populations into two groups. There was significant or moderate negative correlations between genetic diversity parameters (PPL, H, I) and longitude or latitude. Mantel test also showed a significant correlation between geographical distance and genetic distance (r = 0.681, p = 0.002). Our findings indicated that distribution of B. ircutensis populations was influenced by geographical and ecological factors. Clonal diversity was also high with 108 individuals identified by 11 ISSR primers being all of different genets. Our results provide a molecular basis for sustainable management and conservation of B. ircutensis in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frankham, R., Effective Population Size/Adult Population Size Ratios in Wildlife: A Review, Genet. Res., 1995, vol. 66, pp, 95–107.

    Article  Google Scholar 

  2. Hamrick, J.L. and Nason, J.D., Consequences of Dispersal in Plants, Population Dynamics in Ecological Space and Time, Rhodes, O.E.J., Chesser, P.K., and Smith, M.H., Eds., Chicago: Univ. Chicago Press, 1996, pp. 203–236.

    Google Scholar 

  3. Loveless, M.D. and Hamrick, J.L., Ecological Determinants of Genetic Structure in Plant Populations, Annu. Rev. Ecol. Syst., 1984, vol. 15, pp. 65–95.

    Article  Google Scholar 

  4. Ingvarsson, P.K., The Effect of Delayed Population Growth on the Genetic Differentiation of Local Populations Subject to Frequent Extinctions and Recolonizations, Evolution, 1997, vol. 51, pp. 29–35.

    Article  Google Scholar 

  5. Schnabel, A., Nason, J.D., and Hamrick, J.L., Understanding the Population Genetic Structure of Gleditsia triacanthos L.: Seed Dispersal and Variation in Female Reproductive Success, Mol. Ecol., 1998, vol. 7, pp. 819–823.

    Article  Google Scholar 

  6. Parks, J.C. and Werth, C.R., A Study of Spatial Features of Clones in a Population of Bracken Fern, Pteridium aquilinum (Dennstaedticaceae), Am. J. Bot., 1993, vol. 80, pp.537–544.

    Article  Google Scholar 

  7. Sipes, S.D. and Wolf, P.G., Clonal Structure and Patterns of Allozyme Diversity in the Rare Endemic Cycladenia humilis var. jonesii (Apocyanaceae), Am. J. Bot., 1997, vol. 84, pp. 401–409.

    Article  CAS  Google Scholar 

  8. Pornon, A., Escaravage, N., Thomas, P., and Taberlet, P., Dynamics of Genotypic Structure in Clonal Rhododendron ferrugineum (Ericaceae) Populations, Mol. Ecol., 2000, vol. 9, pp.1099–1111.

    Article  PubMed  CAS  Google Scholar 

  9. Escaravage, N., Questiau, S., and Pornon, A., et al., Clonal Diversity in a Rhododendron ferrugineum L. (Ericaceae) Population Inferred from AFLP Markers, Mol. Ecol., 1998, vol. 7, pp.975–982.

    Article  CAS  Google Scholar 

  10. Montalvo, A.M., Conard, S.G., Conkle, M.T., and Hodgskiss, P.D., Population Structure, Genetic Diversity, and Clone Formation in Quercus chrysolepis (Fagaceae), Am. J. Bot., 1997, vol. 84, pp.1553–1564.

    Article  Google Scholar 

  11. Kemperman, J.A. and Barnes, B.V., Clone Size in American Aspens, Can. J. Bot., 1976, vol. 54, pp.2603–2607.

    Article  Google Scholar 

  12. Widen, B., Cronberg, N., and Widen, M., Genotypic Diversity, Molecular Markers and Spatial Distribution of Genets in Clonal Plants, a Literature Survey, Folia Geobot. Phytotax., 1994, vol. 29, pp.245–263.

    Article  Google Scholar 

  13. Hsiao, J.Y. and Rieseberg, L.H., Population Genetic Structure of Yushania niitakayamensis (Bambusoideae, Poaceae) in Taiwan, Mol. Ecol., 1994, vol. 3, pp.201–208.

    Article  Google Scholar 

  14. Gabrielsen, T.M. and Brochmann, C., Sex after All: High Levels of Diversity Detected in the Arctic Clonal Plant Saxifraga cernua Using RAPD Markers, Mol. Ecol., 1998, vol. 7, pp.1701–1708.

    Article  Google Scholar 

  15. Esselman, E.J., Jiangqiang, L., Crawford, D.J., et al., Clonal Diversity in the Rare Calamagrostis porteri ssp. insperata (Poaceae): Comparative Results for Allozymes and Random Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeat (ISSR) Markers, Mol. Ecol., 1999, vol. 8, pp.443–451.

    Article  CAS  Google Scholar 

  16. Ainsworth, E.A., Tranel, P.J., Drake, B.G., and Long, S.P., The Clonal Structure of Quercus geminata Revealed by Conserved Microsatellite Loci, Mol. Ecol., 2003, vol. 12, pp.527–532.

    Article  PubMed  CAS  Google Scholar 

  17. Van der Velde, M., During, H.J., Van de Zande, L., and Bijlsma, R., The Reproductive Biology of Polytrichum formosum: Clonal Structure and Paternity Revealed by Microsatellites, Mol. Ecol., 2001, vol. 10, pp.2423–2434.

    Article  PubMed  Google Scholar 

  18. Li, A. and Ge, S., Genetic Variation and Clonal Diversity of Psammochloa villosa (Poaceae) Detected by ISSR Markers, Ann. Bot., 2001, vol. 87, pp.585–590.

    Article  CAS  Google Scholar 

  19. Ma, Y.Q., Flora of Inner Mongolia, Hohhot: Inner Mongolia People’s Press, 1994, vol. 5, p. 104.

    Google Scholar 

  20. Editorial Committee of Flora of China, Chinese Academy of Sciences, Flora of China, Beijing: Science Press, 2002.

  21. Song, C.Y., Guo, K., and Liu, G.H., Relationships between Plant Community’s Species Diversity and Soil Factors on Qtingdag Sandy Land, Chin. J. Ecol., 2008, vol. 27, pp.8–13.

    Google Scholar 

  22. Chu, Y., He, W.M., Liu, H.D., et al., Phytomass and Plant Functional Diversity in Early Restoration of the Degraded, Semi-Arid Grasslands in Northern China, J. Arid Environ., 2006, vol. 67, pp.678–687.

    Article  Google Scholar 

  23. He, Q. and Lu, D.R., Monitoring Vegetation Cover Change in East Hunshandake Sandy Land with Land-sat TM and ETM+ and Its Possible Causes, Remote Sensing Technol. Appl., 2003, vol. 18, pp.353–359.

    Google Scholar 

  24. Zha, Y. and Gao, J., Characteristics of Desertification and Its Rehabilitation in China, J. Arid Environ., 1997, vol. 37, pp.419–432.

    Article  Google Scholar 

  25. Yang, X., Ding, Z., Fan, X., et al., Processes and Mechanisms of Desertification in Northern China during the Last 30 Years, with a Special Reference to the Hunshandake Sandy Land, Eastern Inner Mongolia, Catena, 2007, vol. 71, pp, 2–12.

    Article  Google Scholar 

  26. Mi, Y.J., Shi, E.L., and Tian, Q.S., Germination Conditions on Soil Surface and Its Effect on Seedling Growth of Bromus ircutensis, Chinese J. Grassland, 2009, vol. 31, pp.71–75.

    Google Scholar 

  27. Li, J.H. and Li, Q.F., A Study on Heat Tolerance of two Bromus Species during Seed Germination, J. Arid Land Resour. Environ., 2001, vol. 15, pp.102–105.

    Google Scholar 

  28. Wang, D.J., Shi, F.L., Li, Z.L., et al., Study on the Seed Vigor and Drought Resistance of Three Perennial Forages Belong to Bromus under PEG Stress, Seed, 2009, vol. 28, pp.31–34.

    Google Scholar 

  29. Liu, H.D., Yu, F.H., He, W.M., et al., Are Clonal Plants More Tolerant to Grazing than Co-Occurring Non-Clonal Plants in Inland Dunes?, Ecol. Res., 2007, vol. 22, pp.502–506.

    Article  Google Scholar 

  30. Liu, H.D., Yu, F.H., He, W.M., et al., Clonal Integration Improves Compensatory Growth in Heavily Grazed Ramet Populations of Two Inland-Dune Grasses, Flora, 2009, vol. 204, pp.298–305.

    Google Scholar 

  31. Tian, Q.S., Han, B., and Yang, J., et al., Genetic Diversity Analysis of 96 Brome Materials Based on ISSR Markers, Chinese J. Grassland, 2010, vol. 32, pp, 18–25.

    CAS  Google Scholar 

  32. Ao, Y.H., Pei, H., Wang, Y.L., and Li, Y.P., Monitoring on Land Cover Dynamics of Hunshandake Sandland by Remote Sensing, J. Desert Res., 2010, vol. 30, pp.33–39.

    Google Scholar 

  33. Zheng, Y.R., Xie, Z.X., Robert, C., et al., Did Climate Drive Ecosystem Change and Induce Desertification in Otindag Sandy Land, China over the Past Years?, J. Arid Environ., 2006, vol. 64, pp, 523–541.

    Article  Google Scholar 

  34. Sambrook, J. and Russell, D.W., Molecular Cloning,: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 2001, 3rd ed.

    Google Scholar 

  35. Yeh, F.C., Yang, R.C., and Boyle, T., POPGENE. Microsoft Windows-Based Freeware for Population Genetic Analysis: Release 1.31, Edmonton: Univ. Alberta, 1999.

    Google Scholar 

  36. Rohlf, F.J., NTSYS-pc: Numerical Taxonomy and Multvariate Analysis System: Version 2. I. User Guide, Setauket: Exeter Software, 2004.

    Google Scholar 

  37. Excoffier, L., Laval, G., and Schneider, S., ARLEQUIN ver. 3.1: An Integrated Software Package for Population Genetics Data Analysis, Bern: Bern Univ., 2006.

    Google Scholar 

  38. Ellstrand, N.C. and Roose, M.L., Patterns of Genotypic Diversity in Clonal Plant Species, Am. J. Bot., 1987, vol. 74, pp.123–131.

    Article  Google Scholar 

  39. Fager, E.W., Diversity: A Sampling Study, Am. Naturalist, 1972, vol. 106, pp.293–310.

    Article  Google Scholar 

  40. Eckert, C.G. and Barrett, S.C.H., Clonal Reproduction and Patterns of Genotypic Diversity in Decodon verticillatus (Lythraceae), Am. J. Bot., 1993, vol. 80, pp.1175–1182.

    Article  Google Scholar 

  41. Zhao, Q.F., Wang, G., and Li, Q.X., Genetic Diversity of Five Kobresia Species along the Eastern Qinghai-Tibet Plateau in China, Hereditas, 2006, vol. 143, pp.33–40.

    Article  PubMed  Google Scholar 

  42. Harald, A., Barbara, N., Friderike, E., et al., Demographic and Random Amplified Polymorphic DNA Analyses Reveal High Levels of Genetic Diversity in a Clonal Violet, Mol. Ecol., 2001, vol. 10, pp.1811–1819.

    Article  Google Scholar 

  43. Torimaru, T., Tomaru, N., Nishimura, N., and Yamamoto, S., Clonal Diversity and Genetic Differentiation in Ilex leucoclada M. Patches in an Old-Growth Beech Forest, Mol. Ecol., 2003, vol. 12, pp.809–818.

    Article  PubMed  CAS  Google Scholar 

  44. Gill, D.E., Chao, L., Perkins, S.L., and Wolf, J.B., Genetic Mosaicism in Plants and Clonal Animals, Annu. Rev. Ecol. Syst., 1995, vol. 26, pp.423–444.

    Article  Google Scholar 

  45. Eriksson, O., Clonal Life Histories and the Evolution of Seed Recruitment, The Ecology and Evolution of Clonal Plants, de Kroon, H. and van Groenendael, J., Eds., Leiden; Backhuys Publ., 1997, pp.211–226.

    Google Scholar 

  46. Renner, S.S., Tropical Trans-Atlantic Disjunctions, Sea Surface Currents, and Wind Patterns, Int. J. Plant Sci., 2004, vol. 165,suppl. 4, pp.s23–s33.

    Article  Google Scholar 

  47. Gottschling, M., Diane, N., Hilger, H.H., and Weigend, M., Testing Hypothesis on Disjunctions Present in the Primarily Woody Boraginales: Ehretiaceae, Cordiaceae, and Heliotropiaceae, Inferred from ITS, Sequence Data, Int. J. Plant Sci., 2004, vol. 165,suppl. 4, pp.s123–s135.

    Article  CAS  Google Scholar 

  48. Zhao, G.G., Felber, F., and Kuepfer, P., Subpopulation Differentiation of Anthoxanthum alpinum (Poaceae) along an Altitudinal Gradient Detected by Random Amplified Polymorphic DNA, Acta Phytotaxon. Sin., 2000, vol. 38, pp.64–70.

    Google Scholar 

  49. Maki, M., Morita, H., Oiki, S., and Takahashi, H., The Effect of Geographic Range and Dichogamy on Genetic Variability and Population Genetic Structure in Tricyrtis Section Flavae (Liliaceae), Am. J. Bot., 1999, vol. 86, pp.287–292.

    Article  Google Scholar 

  50. Wolfe, A.D. and Liston, A., Contributions of PCR-Based Methods to Plant Systematics and Evolutionary Biology, Molecular Systematics of Plants: II. DNA Sequencing, Soltis, D.E., Soltis, P.S., and Doyle, J.J., Eds., New York: Chapman and Hall, 1998, pp.43–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, T., Han, B., Tian, Q. et al. Genetic variation and clonal diversity of Bromus ircutensis Kom. in the Otingdag sandy land detected by ISSR markers . Russ J Genet 47, 703–710 (2011). https://doi.org/10.1134/S1022795411060172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795411060172

Keywords

Navigation