Skip to main content

Advertisement

Log in

A retroposition assay for the NLR1Cth from midge Chironomus thummi genome in the Chinese hamster ovary cells

  • Molecular Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Non-Long Terminal Repeats (non-LTR or LINE) retrotransposons belong to the class of mobile genetic elements that are transposed into the host genome by reverse transcription of the RNA intermediate. Most of non-LTR retrotransposons contain two open reading frames (ORFs). The ORF1 codes for a gag-like protein, while the ORF2 codes for a reverse transcriptase (RT). We cloned two constructs based on Jockey-like non-LTR retrotransposon from genome Chironomus thummi (NLR1Cth). The retroposition assay performed in Chinese hamster ovary (CHO) cells demonstrated genome integrations of both constructs. The finding that the insect mobile element NLR1Cth is functional in mammalian cells demonstrates that this element possess universal enzymatic machinery allowing for active propagation in the genome of distant taxa. This suggests that the NLR1Cth transposon system may represent a useful tool for genetic analysis and manipulation in vertebrate cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berezikov, E., Bucheton, A., and Busseau, I., A Search for Reverse Transcriptase-Coding Sequences Reveals New Non-LTR Retrotransposons in the Genome of Drosophila melanogaster, Genome Biol., 2000, vol. 1, no. 6. P. research0012.1–12.15.

    Article  Google Scholar 

  2. International Human Genome Sequencing Consortium: Initial Sequencing and Analysis of the Human Genome, Nature, 2001, vol. 409, pp. 860–921.

    Article  Google Scholar 

  3. Moran, J.V. and Gilbert, N., Mammalian LINE-1 Retrotransposons and Related Elements, in: Mobile DNA II, Craig N., et al. Eds., Washington, DC: ASM Press, 2002, pp. 836–869.

    Google Scholar 

  4. Brouha, B., Schustak, J., Badge, R.M., et al., Hot L1s Account for the Bulk of Retrotransposition in the Human Population, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 5280–5285.

    Article  PubMed  CAS  Google Scholar 

  5. Goodier, J.L., Ostertag, E.M., Du, K., and Kazazian, H.H., A Novel Active L1 Retrotransposon Subfamily in the Mouse, Genome Res., 2001, vol. 11, pp. 1677–1685.

    Article  PubMed  CAS  Google Scholar 

  6. Ostertag, E.M., DeBerardinis, R.J., Goodier, J.L., et al., A Mouse Model of Human L1 Retrotransposition, Nat. Genet., 2002, vol. 32, pp. 655–660.

    Article  PubMed  CAS  Google Scholar 

  7. Prak, E.T., Dodson, A.W., Farkash, E.A., and Kazazian, H.H., Jr., Tracking an Embryonic L1 Retrotrans-position Event, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 1832–1837.

    Article  PubMed  CAS  Google Scholar 

  8. Muotri, A.R., Chu, V.T., Marchetto, M.C., et al., Somatic Mosaicism in Neuronal Precursor Cells Mediated by L1 Retrotransposition, Nature, 2005, vol. 435, pp. 903–910.

    Article  PubMed  CAS  Google Scholar 

  9. Kazazian, H.H., Wong, C., Youssoufian, H., et al., A Resulting from de novo Insertion of L1 Sequences Represents a Novel Mechanism for Mutation in Man, Nature, 1988, vol. 332, no. 6160, pp. 164–166.

    Article  PubMed  CAS  Google Scholar 

  10. Schwahn, U., Lenzner, S., Dong, J., et al., Positional Cloning of the Gene for X-Linked Retinitis Pigmentosa 2, Nat. Genet., 1998, vol. 19, pp. 327–332.

    Article  PubMed  CAS  Google Scholar 

  11. Ostertag, E.M., Prak, E.T., DeBerardinis, R.J., et al., Determination of L1 Retrotransposition Kinetics in Cultured Cells, Nucleic Acids Res., 2000, vol. 28, pp. 1418–1423.

    Article  PubMed  CAS  Google Scholar 

  12. Miki, Y., Nishisho, I., Horii, A., et al., Disruption of the APC Gene by a Retrotransposal Insertion of L1 Sequence in a Colon Cancer, Cancer Res., 1992, vol. 52, pp. 643–645.

    PubMed  CAS  Google Scholar 

  13. Moran, J.V., Holmes, S.E., Naas, T.P., et al., High Frequency Retrotransposition in Cultured Mammalian Cells, Cell, 1996, vol. 87, no. 5, pp. 917–927.

    Article  PubMed  CAS  Google Scholar 

  14. Shi, X., Seluanov, A., and Gorbunova, V., Cell Divisions Are Required for L1 Retrotransposition, Mol. Cell. Biol., 2007, vol. 27, pp. 1264–1270.

    Article  PubMed  CAS  Google Scholar 

  15. Malik, S., Burke, W.D., and Eickbush, T.H., The Age and Evolution of Non-LTR Retrotransposable Element, Mol. Biol. Evol., 1999, vol. 16, no. 6, pp. 793–805.

    PubMed  CAS  Google Scholar 

  16. Novikova, O. and Blinov, A., Origin, Evolution and Distribution of Non-LTR Retrotransposons among Eukaryotes, Russ. J. Genet., 2009, vol. 45, no. 2, pp. 129–138.

    Article  CAS  Google Scholar 

  17. Luan, D.D., Korman, M.H., Jakubczak, J.L., and Eickbush, T.H., Reverse Transcription of R2Bm RNA is Primed by a Nick at the Chromosomal Target Site: A Mechanism for Non-LTR Retrotransposition, Cell, 1993, vol. 72, no. 4, pp. 595–605.

    Article  PubMed  CAS  Google Scholar 

  18. Luan, D.D. and Eickbush, T.H., RNA Template Requirements for Target DNA-Primed Reverse Transcription by the R2 Retrotransposable Element Mol. Cell Biol., 1995, vol. 15, no. 7, pp. 3882–3890.

    CAS  Google Scholar 

  19. Christensen, S. and Eickbush, T.H., Footprint of the Retrotransposon R2Bm Protein on Its Target Site before and after Cleavage, J. Mol. Biol., 2004, vol. 336, no. 5, pp. 1035–1045.

    Article  PubMed  CAS  Google Scholar 

  20. Christensen, S.M., Ye, J., and Eickbush, T.H., RNA from the 5’ End of the R2 Retrotransposon Controls R2 Protein Binding to and Cleavage of Its DNA Target Site, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, no. 47, pp. 1762–1837.

    Article  Google Scholar 

  21. Christensen, S.M., Bibillo, A., and Eickbush, T.H., Role of the Bombyx mori R2 Element N-Terminal Domain in the Target-Primed Reverse Transcription (TPRT) Reaction, Nucleic Acids Res., 2005, vol. 33, no. 20, pp. 6461–6468.

    Article  PubMed  CAS  Google Scholar 

  22. Blinov, A.G., Sobanov, Y.V., Bogachev, S.S., et al., The Chironomus thummi Genome Contains a Non-LTR Retrotransposon, Mol. Gen. Genet., 1993, vol. 237, no. 3, pp. 412–420.

    PubMed  CAS  Google Scholar 

  23. Gruhl, M.C., Scherbik, S.V., Aimanova, K.G., et al., Insect Globin Gene Polymorphisms: Intronic Minisatellites and a Retroposon Interrupting Exon 1 of Homologous Globin Genes in Chironomus (Diptera), Gene, 2000, vol. 251, no. 2, pp. 153–163.

    Article  PubMed  CAS  Google Scholar 

  24. Heidmann, O. and Heidmann, T., Retrotransposition of a Mouse IAP Sequence Tagged with an Indicator Gene, Cell, 1991, vol. 64, no. 1, pp. 159–170.

    Article  PubMed  CAS  Google Scholar 

  25. Kajikawa, M. and Okada, N., LINEs Mobilize SINEs in the eel through a Shared 3′ Sequence, Cell, 2002, vol. 111, no. 3, pp. 433–444.

    Article  PubMed  CAS  Google Scholar 

  26. Matsumoto, T., Takahashi, H., and Fujiwara, H., Targeted Nuclear Import of Open Reading Frame 1 Protein Is Required for in vivo Retrotransposition of a Telomere-Specific Non-Long Terminal Repeat Retrotransposon, SART1, Mol. Cell Biol., 2004, vol. 24, no. 1, pp. 105–122.

    Article  PubMed  CAS  Google Scholar 

  27. Freeman, J.D., Goodchild, N.L., and Mager, D.L., A Modified Indicator Gene for Selection of Retrotrans-position Events in Mammalian Cells, Biotechniques, 1994, vol. 17, no. 1, pp. 46, 48–49, 52.

    PubMed  CAS  Google Scholar 

  28. Beresikov, E., Novikova, O., Makarevich, I., et al., Evolutionary Relationships and Distribution of Non-LTR Retrotransposons in Eukaryotes, Proc. 5th Int. Conf. Bioinformatics of Genome Regulation and Structure-BGRS, Kolchanov, N.A., Ed., Inst. Cytol. Genet. Siberian Branch Russ. Acad. Sci., 2004, vol. 2, pp. 181–184.

  29. Dombroski, B.A., Feng, Q., Mathias, S.L., et al., An in vivo Assay for the Reverse Transcriptase of Human Retrotransposon L1 in Saccharomyces cerevisiae, Mol. Cell. Biol., 1994, vol. 14, pp. 4485–4492.

    PubMed  CAS  Google Scholar 

  30. Hirochika, H., Okamoto, H., and Kakutani, T., Silencing of Retrotransposons in Arabidopsis and Reactivation by the ddm1 Mutation, Plant Cell, 2000, vol. 12, no. 3, pp. 357–369.

    Article  PubMed  CAS  Google Scholar 

  31. Walsh, C.P., Chaillet, J.R., and Bestor, T.H., Transcription of IAP Endogenous Retroviruses is Constrained by Cytosine Methylation, Nat. Genet., 1998, vol. 20, no. 2, pp. 116–117.

    Article  PubMed  CAS  Google Scholar 

  32. Yoder, J.A., Walsh, C.P., and Bestor, T.H., Cytosine Methylation and the Ecology of Intragenomic Parasites, Trends Genet., 1997, vol. 13, no. 8, pp. 335–340.

    Article  PubMed  CAS  Google Scholar 

  33. Yu, F., Zingler, N., Schumann, G., and Stratling, W.H., Methyl-CpG-Binding Protein 2 Represses LINE-1 Expression and Retrotransposition but not Alu Transcription, Nucleic Acids Res., 2001, vol. 29, no. 21, pp. 4493–4501.

    Article  PubMed  CAS  Google Scholar 

  34. Nolan, T., Braccini, L., Azzalin, G., et al., The Post-Transcriptional Gene Silencing Machinery Functions Independently of DNA Methylation to Repress a LINE-1 Retrotransposon in Neurospora crassa, Nucleic Acids Res., 2005, vol. 33, no. 5, pp. 1564–1573.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ponimaskin.

Additional information

Published in Russian in Genetika, 2011, Vol. 47, No. 6, pp. 774–782.

The article is published in the original.

Recipient of a DAAD fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikova, O., Papusheva, E., Ponimaskin, E. et al. A retroposition assay for the NLR1Cth from midge Chironomus thummi genome in the Chinese hamster ovary cells. Russ J Genet 47, 682–690 (2011). https://doi.org/10.1134/S1022795411060147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795411060147

Keywords

Navigation