Skip to main content
Log in

Mutational analysis of the ribC gene of Bacillus subtilis

  • Short Communications
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The nucleotide sequence of the ribC gene encoding the synthesis of bifunctional flavokinase/flavine adenine nucleotide (FAD) synthetase in Bacillus subtilis have been determined in a family of riboflavinconstitutive mutants. Two mutations have been found in the proximal region of the gene, which controls the transferase (FAD synthase) activity. Three point mutations and one double mutation have been found (in addition to the two mutations that were detected earlier) in the distal region of the gene, which controls the flavokinase (flavin mononucleotide (FMN) synthase) activity. On the basis of all data known to date, it has been concluded that the identified mutations affect riboflavin and ATP binding sites. No mutations have been found in the PTAN conserved sequence, which forms the magnesium and ATP common binding site and is identical for organisms of all organizational levels, from bacteria too humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Gusarov, I.I., Kreneva, R.A., Rybak, K.V., et al., Primary Structure and Functional Activity of the Bacillus subtilis Gene ribC, Mol. Biol. (Moscow), 1997, vol. 31, no. 5, pp. 698–703.

    CAS  Google Scholar 

  2. Kreneva, R.A., Solovieva, I.M., Lopes, L.E., et al., Investigation of the Regulation Mechanism of the ribC Gene Activity in Bacillus subtilis, Russ. J. Genet., 2001, vol. 37, no. 9, pp. 1090–1093.

    Article  CAS  Google Scholar 

  3. Kreneva, R.A, Karelov, D.V., and Korolkova, N.V., et al., Multifunctional Regulatory Mutation in Bacillus subtilis Flavinogenesis System, Russ. J. Genet., 2009, vol. 45, no. 10. pp. 1256–1259.

    Article  CAS  Google Scholar 

  4. Mironov, A.S., Gusarov, I., Rafikov, R., et al., Sensing Small Molecules by Nascent RNA: A Mechanism to Control Transcription in Bacteria, Cell, 2002, vol. 111, pp. 747–756.

    Article  PubMed  CAS  Google Scholar 

  5. Perkins, J.B., Sloma, A., Hermann, T., et al., Genetic Engineering of Bacillus subtilis for the Commercial Production of Riboflavin, J. Ind. Microbiol. Biotechnol., 1999, vol. 22, pp. 8–18.

    Article  CAS  Google Scholar 

  6. Mironov, A.S., Korol’kova, N.V., Errais Lopes, L., et al., Method of producing riboflavin, riboflavin-producing Bacillus subtilis strain, RF Patent RU 2 261 273 C2, 2005.

  7. Kreneva, R.A. and Perumov, D.A., Genetic Mapping of Regulatory Mutations of Bacillus subtilis Riboflavin Operon, Mol. Gen. Genet., 1990, vol. 222, pp. 467–469.

    Article  PubMed  CAS  Google Scholar 

  8. Saito, H. and Miura, K.I., Preparation of Transforming DNA by Phenol Treatment, Biochim. Biophys. Acta., 1963, vol. 42, pp. 619–629.

    Article  Google Scholar 

  9. Anagnostopoulos, C. and Spizizen, J., Requirements for Transformation in Bacillus subtilis, J. Bacteriol., 1961, vol. 81, pp. 741–746.

    PubMed  CAS  Google Scholar 

  10. Hagihara, T., Fujio, T., Asaki, K., et al., Cloning of FAD Synthetase from Corynebacterium ammoniagenes and Its Application to FAD and FMN Production, Appl. Microbiol. Biotechnol., 1995, vol. 42, pp. 724–729.

    Article  PubMed  CAS  Google Scholar 

  11. Sanger, F., Nicklen, S., and Coulson, A.R., DNA Sequencing with Chain-Terminating Inhibitors, Proc. Natl. Acad. Sci. USA, 1977, vol. 74, pp. 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  12. Solovieva I.M., Kreneva R.A., Leak D.J., and Perumov D.A., The ribR Gene Encodes a Monofunctional Riboflavin Kinase Which is Involved in Regulation of the Bacillus subtilis Riboflavin Operon, Microbiology, 1999, vol. 145, pp. 67–73.

    Article  PubMed  CAS  Google Scholar 

  13. Frago, S., Martinez-Julvez, M., Serrano, A., et al., Structural Analysis of FAD Synthetase from Corynedacterium ammoniagenes, BMC Microbiol., 2008, vol. 8, pp. 160–172.

    Article  PubMed  Google Scholar 

  14. Clarebout, G., Villers, C., and Leclercq, R., Macrolide Resistance Gene mreA of Streptococcus galaktiae Encodes a Flavokinase, Antimicrob. Agents Chemother., 2001, vol. 45, no. 8, pp. 2280–2286.

    Article  PubMed  CAS  Google Scholar 

  15. Kreneva R.A., Gelfand M.S., Mironov A.A., et al., Inactivation of the ypaA Gene in Bacillus subtilis: Analysis of the Resulting Phenotypic Expression, Russ. J. Genet., 2000, vol. 36, no. 8, pp 972–974.

    CAS  Google Scholar 

  16. Higashitsuji, Y., Angerer, A., Berghaus, S., et al., RibR, a Possible Regulator of the Bacillus subtilis Riboflavin Operon, in vivo Interacts with the 5′-Untranslated Leader of rib mRNA, FEMS Microbiol. Lett., 2007, vol. 274, pp. 48–54.

    Article  PubMed  CAS  Google Scholar 

  17. Karthikeyan, S., Zhou, Q., Mseeh, F., et al., Crystal Structure of Human Riboflavin Kinase Reveals a Barrel Fold and a Novel Active Site Arch, Structure, 2003, vol. 11, no. 3, pp. 265–273.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Karelov.

Additional information

Original Russian Text © D.V. Karelov, R.A. Kreneva, L. Errais Lopes, D.A. Perumov, A.S. Mironov, 2011, published in Genetika, 2011, Vol. 47, No. 6, pp. 856–861.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karelov, D.V., Kreneva, R.A., Errais Lopes, L. et al. Mutational analysis of the ribC gene of Bacillus subtilis . Russ J Genet 47, 757–761 (2011). https://doi.org/10.1134/S102279541106010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541106010X

Keywords

Navigation