Skip to main content
Log in

Genetic control of plant resistance to cold

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Data on the main pathways of the effect of cold on plants and on the pathways of plant responses to cold stress are reviewed. Genes involved in these processes are described. Special attention is given to transcription factors regulating expression of cold resistance genes. In addition, the participation of hormones and metabolites in the protection of plants from cold-induced damage is discussed and a relationship of the response to cold with the circadian rhythms and with the formation of stomata is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guy, C.L. and Haskell, D., Detection of Polypeptides Associated with the Cold Acclimation Process in Spinach, Electrophoresis, 1988, vol. 9, pp. 787–796.

    Article  PubMed  CAS  Google Scholar 

  2. Steponkus, P.L., Role of the Plasma Membrane in Freezing Injury and Cold Acclimation, Annu. Rev. Plant Physiol., 1984, vol. 35, pp. 543–584.

    Article  CAS  Google Scholar 

  3. Steponkus, P.L., Uemura, M., and Webb, M.S., A Contrast of the Cryostability of the Plasma Membrane of Winter Rye and Spring Oat-Two Species That Widely Differ in Their Freezing Tolerance and Plasma Membrane Lipid Composition, Adv. Low-Temp. Biol., 1993, vol. 2, pp. 211–312.

    Google Scholar 

  4. Strauss, G. and Hauser, H., Stabilization of Lipid Bilayer Vesicles by Sucrose during Freezing, Proc. Natl. Acad. Sci. USA, 1986, vol. 83, pp. 2422–2426.

    Article  PubMed  CAS  Google Scholar 

  5. Yancey, P.H., Clark, M.E., Hand, S.C., et al., Living with Water Stress: Evolution of Osmolyte Systems, Science, 1982, vol. 217, pp. 1214–1222.

    Article  PubMed  CAS  Google Scholar 

  6. Timasheff, S.N., The Control of Protein Stability and Association by Weak Interactions with Water: How Do Solvents Affect These Processes?, Annu. Rev. Biophys. Biomol. Struct., 1993, vol. 22, pp. 67–97.

    Article  PubMed  CAS  Google Scholar 

  7. Crowe, J.H., Carpenter, J.F., Crowe, L.M., and Anchordoguy, T.J., Are Freezing and Dehydration Similar Stress Vectors? A Comparison of Modes of Interaction of Stabilizing Solutes with Biomolecules, Cryobiology, 1990, vol. 27, pp. 219–231.

    Article  CAS  Google Scholar 

  8. Hincha, D.K., Popova, A.V., and Cacela, C., Effects of Sugars on the Stability of Lipid Membranes during Drying, Advances in Planar Lipid Bilayers and Liposomes, Leitmannova, Liu, Ed., Amsterdam: Elsevier, 2006, vol. 3, pp. 189–217.

    Chapter  Google Scholar 

  9. Diamant, S., Eliahu, N., Rosenthal, D., and Goloubinoff, P., Chemical Chaperones Regulate Molecular Chaperones in vitro and Cells under Combined Salt and Heat Stresses, J. Biol. Chem., 2001, vol. 276, pp. 39586–39591.

    Article  PubMed  CAS  Google Scholar 

  10. Korn, M., Peterek, S., Mock, H.P., et al., Heterosis in the Freezing Tolerance, and Sugar and Flavonoid Contents of Crosses between Arabidopsis thaliana Accessions of Widely Varying Freezing Tolerance, Plant Cell Env., 2008, vol. 31, pp. 813–827.

    Article  CAS  Google Scholar 

  11. Livingston, D.P. and Henson, C.A., Apoplastic Sugars, Fructans, Fructan Exohydrolase, and Invertase in Winter Oat: Responses to Second-Phase Cold Hardening, Plant Physiol., 1998, vol. 116, pp. 403–408.

    Article  CAS  Google Scholar 

  12. Guy, C.L. and Li, Q.B., The Organization and Evolution of the Spinach Stress 70 Molecular Chaperone Gene Family, Plant Cell, 1998, vol. 10, pp. 539–556.

    Article  PubMed  CAS  Google Scholar 

  13. Novokreshchenova, M.G., Molecular Genetic Mechanisms of Response to Abiotic Stress Factors in Arabidorsis thaliana (L.) Heunh. nfz24 Mutant, Extended Abstract of Cand. Sci. Dissertation, Vavilov Inst. Gen. Genet., Russ. Acad. Sci., Moscow, 2008, p. 25.

    Google Scholar 

  14. Bartosz, G., Oxidative Stress in Plants, Acta Physol. Plantarum, 1997, vol. 19, pp. 47–64.

    Article  CAS  Google Scholar 

  15. Moller, I.M., Jensen, P.E., and Hansson, A., Oxidative Modifications to Cellular Components in Plants, Annu. Rev. Plant Biol., 2007, vol. 58, pp. 459–481.

    Article  PubMed  CAS  Google Scholar 

  16. Savitch, L.V., Barker-Astrom, J., Ivanov, A.G., et al., Cold Acclimation of Arabidopsis thaliana Results in Incomplete Recovery of Photosynthetic Capacity, Associated with an Increased Reduction of the Chloroplast Stroma, Planta, 2001, vol. 214, pp. 295–303.

    Article  PubMed  CAS  Google Scholar 

  17. Hurry, V., Strand, A., Furbank, R., and Stitt, M., The Role of Inorganic Phosphate in the Development of Freezing Tolerance and the Acclimatization of Photosynthesis to Low Temperature Is Revealed by the pho Mutants of Arabidopsis thaliana, Plant J., 2000, vol. 24, pp. 383–396.

    Article  PubMed  CAS  Google Scholar 

  18. Flexas, J. and Medrano, H., Drought-Inhibition of Photosynthesis in C3 Plants: Stomatal and Non-Stomatal Limitations Revisited, Ann. Botany, 2002, vol. 89, pp. 183–189.

    Article  CAS  Google Scholar 

  19. Uehlein, N., Lovisolo, C., Siefritz, F., and Kaldenhoff, R., The Tobacco Aquaporin NtAQP1 Is a Membrane CO2 Pore with Physiological Functions, Nature, 2003, vol. 425, pp. 734–737.

    Article  PubMed  CAS  Google Scholar 

  20. Saibo, N.J.M., Lourenco, T., and Oliveira, M.M., Transcription Factors and Regulation of Photosynthetic and Related Metabolism under Environmental Stresses, Ann. Botany, 2009, vol. 103, pp. 609–623.

    Article  CAS  Google Scholar 

  21. Lee, Y.P., Fleming, A.J., Koerner, Ch., and Meins, F., Differential Expression of the CBF Pathway and Cell Cycle-Related Genes in Arabidopsis Accessions in Response to Chronic Low-Temperature Exposure, Plant Biol., 2009, vol. 3, pp. 273–283.

    Article  CAS  Google Scholar 

  22. Gray, G.R., Chauvin, L.P., Sarhan, F., and Huner, N., Cold Acclimation and Freezing Tolerance (A Complex Interaction of Light and Temperature), Plant Physiol., 1997, vol. 114, pp. 467–474.

    PubMed  CAS  Google Scholar 

  23. Wanner, L.A. and Junttila, O., Cold-Induced Freezing Tolerance in Arabidopsis, Plant Physiol., 1999, vol. 120, pp. 391–400.

    Article  PubMed  CAS  Google Scholar 

  24. Soitamo, A.J., Piippo, M., Allahverdiyeva, Y., et al., Light Has a Specific Role in Modulating Arabidopsis Gene Expression at Low Temperature, BMC Plant Biol., 2008, doi:10.1186/1471-2229-8-13.

  25. Kim, H.J., Kim, Y.K., Park, J.Y., and Kim, J., Light Signalling Mediated by Phytochrome Plays an Important Role in Cold-Induced Gene Expression through the C-Repeat/Dehydration Responsive Element (C/DRE) in Arabidopsis thaliana, Plant J., 2002, vol. 29, pp. 693–704.

    Article  PubMed  CAS  Google Scholar 

  26. Zeevaart, J.A.D. and Creelman, R.A., Metabolism and Physiology of Abscisic Acid, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1988, vol. 39, pp. 439–473.

    Article  CAS  Google Scholar 

  27. Finkelstein, R. and Rock, C., Abscisic Acid Biosynthesis and Response, Cold Spring Harbor: Cold Spring Harbor Lab., 2002.

    Google Scholar 

  28. Xiong, L. and Zhu, J.K., Regulation of Abscisic Acid Biosynthesis, Plant Physiol., 2003, vol. 133, pp. 29–36.

    Article  PubMed  CAS  Google Scholar 

  29. Shinozaki, K. and Yamaguchi-Shinozaki, K., Gene Networks Involved in Drought Stress Response and Tolerance, J. Exp. Botany, 2007, vol. 58, pp. 221–227.

    Article  CAS  Google Scholar 

  30. Davies, P.J., Plant Hormones: Biosynthesis, Signal Transduction, Action, Dordrecht: Kluwer, 2004.

    Google Scholar 

  31. Hwang, I., Chen, H.C., and Sheen, J., Two-Component Signal Transduction Pathways in Arabidopsis, Plant Physiol., 2002, vol. 129, pp. 500–515.

    Article  PubMed  CAS  Google Scholar 

  32. Urao, T., Yakubov, B., Satoha, R., et al., A Transmembrane Hybrid-Type Histidine Kinase in Arabidopsis Functions as an Osmosensor, Plant Cell, 1999, vol. 11, pp. 1743–1754.

    Article  PubMed  CAS  Google Scholar 

  33. Xia, X.J., Chen, Z., and Yu, J.Q., ROS Mediate Brassinosteroids-Induced Plant Stress Responses, Plant Signal Behav., 2010, vol. 5, pp. 532–534.

    Article  CAS  Google Scholar 

  34. Wang, Y., Liu, C., Li, K., et al., Arabidopsis EIN2 Modulates Stress Response through Abscisic Acid Response Pathway, Plant Mol. Biol., 2007, vol. 64, pp. 633–644.

    Article  PubMed  CAS  Google Scholar 

  35. Satoh, R., Nakashima, K., Seki, M., et al., ACTCAT, a Novel Cis-Acting Element for Proline- and Hypoosmolarity-Responsive Expression of the ProDH Gene Encoding Proline Dehydrogenase in Arabidopsis, Plant Physiol., 2002, vol. 130, pp. 709–719.

    Article  PubMed  CAS  Google Scholar 

  36. Oono, Y., Seki, M., Nanjo, T., et al., Monitoring Expression Profiles of Arabidopsis Gene Expression during Rehydration Process after Dehydration Using Ca. 7000 Full-Length cDNA Microarray, Plant J., 2003, vol. 34, pp. 868–887.

    Article  PubMed  CAS  Google Scholar 

  37. Patel, D. and Franklin, K., Temperature-Regulation of Plant Architecture, Plant Signal Behav., 2009, vol. 4, pp. 577–579.

    Article  PubMed  CAS  Google Scholar 

  38. Achard, P., Gong, F., Cheminant, S., et al., The Cold-Inducible CBF1 Factor-Dependent Signaling Pathway Modulates the Accumulation of the Growth Repressing DELLA Proteins via Its Effect on Gibberellin Metabolism, Plant Cell, 2008, vol. 20, pp. 2117–2129.

    Article  PubMed  CAS  Google Scholar 

  39. Kuznetsov, Vl.V., Radyukina, N.L., and Shevyakova, N.I., Polyamines and Stress: Biological Role, Metabolism, and Regulation, Russ. J. Plant Physiol., 2006, vol. 53, pp. 583–604.

    Article  CAS  Google Scholar 

  40. Chinnusamy, vol., Zhu, J., and Zhu, J-K., Cold Stress Regulation of Gene Expression in Plants, Trends Plant Sci., 2007, vol. 12, pp. 444–451.

    Article  PubMed  CAS  Google Scholar 

  41. Martin, M.L. and Busconi, L., A Rice Membrane-Bound Calcium Dependent Protein Kinase Is Activated in Response to Low Temperature, Plant Physiol., 2001, vol. 125, pp. 1442–1449.

    Article  PubMed  CAS  Google Scholar 

  42. Kudla, J., Xu, Q., Harter, K., and Gruissem, W., Genes for Calcineurin B-Like Proteins in Arabidopsis Are Differentially Regulated by Stress Signals, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 4718–4723.

    Article  PubMed  CAS  Google Scholar 

  43. Kim, K.N., Cheong, Y.H., and Grant, J.J., et al., CIPK3, a Calcium Sensor-Associated Protein Kinase That Regulates Abscisic Acid and Cold Signal Transduction in Arabidopsis, Plant Cell, 2003, vol. 15, pp. 411–423.

    Article  PubMed  CAS  Google Scholar 

  44. Catalá, R., Santos, E., Jos, M., et al., Mutations in the Ca2+/H+ Transporter CAX1 Increase CBF/DREB1 Expression and the Cold-Acclimation Response in Arabidopsis, Plant Cell, 2003, vol. 15, pp. 2940–2951.

    Article  PubMed  CAS  Google Scholar 

  45. Hirschi, K.D., Expression of Arabidopsis CAX1 in Tobacco: Altered Calcium Homeostasis and Increased Stress Sensitivity, Plant Cell, 1999, vol. 11, pp. 2113–2122.

    Article  PubMed  CAS  Google Scholar 

  46. Albrecht, vol., Weinl, S., Blazevic, D., et al., The Calcium Sensor CBL1 Integrates Plant Responses to Abiotic Stresses, Plant J., 2003, vol. 36, pp. 457–470.

    Article  PubMed  CAS  Google Scholar 

  47. Batistic, O. and Kudla, J., Plant Calcineurin B-Like Proteins and Their Interacting Protein Kinases, Biochim. Biophys. Acta, 2007, vol. 1793, pp. 985–992.

    Article  CAS  Google Scholar 

  48. Cheong, Y.H., Kim, K.N., Pandey, G.K., et al., CBL1, a Calcium Sensor That Differentially Regulates Salt, Drought, and Cold Responses in Arabidopsis, Plant Cell, 2003, vol. 15, pp. 1833–1845.

    Article  PubMed  CAS  Google Scholar 

  49. Luan, S., The CBL-CIPK Network in Plant Calcium Signaling, Trends Plant Sci., 2008, vol. 14, pp. 37–42.

    Article  PubMed  CAS  Google Scholar 

  50. Pandey, G.K., Cheong, Y.H., Kim, K.N., et al., The Calcium Sensor Calcineurin B-Like 9 Modulates Abscisic Acid Sensitivity and Biosynthesis in Arabidopsis, Plant Cell, 2004, vol. 16, pp. 1912–1924.

    Article  PubMed  CAS  Google Scholar 

  51. Batistic, O. and Kudla, J., Integration and Channeling of Calcium Signaling through the CBL Calcium Sensor/CIPK Protein Kinase Network, Planta, 2004, vol. 219, pp. 915–924.

    Article  PubMed  CAS  Google Scholar 

  52. Luan, S., Kudla, J., Rodriguez-Concepcion, M., et al., Calmodulins and Calcineurin B-Like Proteins: Calcium Sensors for Specific Signal Response Coupling in Plants, Plant Cell, 2002, vol. 14, pp. 389–400.

    Google Scholar 

  53. Batistic, O., Sorek, N., Schultke, S., et al., Dual Fatty Acyl Modification Determines the Localization and Plasma Membrane Targeting of CBL/CIPK Ca2+ Signaling Complexes in Arabidopsis, Plant Cell, 2008, vol. 20, pp. 1346–1362.

    Article  PubMed  CAS  Google Scholar 

  54. Ishitani, M., Liu, J., Halfter, U., et al., SOS3 Function in Plant Salt Tolerance Requires N-Myristoylation and Calcium Binding, Plant Cell, 2000, vol. 12, pp. 1667–1678.

    Article  PubMed  CAS  Google Scholar 

  55. Cheong, Y.H., Sung, S.J., Kim, B.-G., et al., Constitutive Overexpression of the Calcium Sensor CBL5 Confers Osmotic or Drought Stress Tolerance in Arabidopsis, Mol. Cells, 2010, vol. 29, pp. 159–165.

    Article  PubMed  CAS  Google Scholar 

  56. Guy, C.L., Niemi, K.J., and Brambl, R., Altered Gene Expression during Cold Acclimation of Spinach, Proc. Natl. Acad. Sci. USA, 1985, vol. 82, pp. 3673–3677.

    Article  PubMed  CAS  Google Scholar 

  57. Hannah, M.A., Heyer, A.G., and Hincha, D.K., A Global Survey of Gene Regulation during Cold Acclimation in Arabidopsis thaliana, PLoS Genet, 2005. doi: 10.137/journal.pgen.0010026.

  58. Thomashow, M.F., Plant Cold Acclimation: Freezing Tolerance Genes and Regulatory Mechanisms, Plant Mol. Biol., 1999, vol. 50, pp. 571–599.

    Article  CAS  Google Scholar 

  59. Los, D.A. and Murata, N., Structure and Expression of Fatty Acid Desaturases, Biochim. Biophys. Acta, 1998, vol. 1394, pp. 3–15.

    PubMed  CAS  Google Scholar 

  60. Maali, A.R., Goldenkova-Pavlova, I.V., Pchelkin, V.P., et al., Acyl-Lipid I12-Desaturase of the Cyanobacterium Increases the Unsaturation Degree in Transgenic Potato (Solanum tuberosum L.), Biologija, 2007, vol. 53, pp. 4–7.

    Google Scholar 

  61. Thorlby, G., Fourrier, N., and Warren, G., The SENSITIVE TO FREEZING2 Gene, Required for Freezing Tolerance in Arabidopsis thaliana, Encodes a β-Glucosidase, Plant Cell, 2004, vol. 16, pp. 2192–2203.

    Article  PubMed  CAS  Google Scholar 

  62. Gerardi, C., Blando, F., Santino, A., and Zacheo, G., Purification and Characterization of a Beta-Glucosidase Abundantly Expressed in Ripe Sweet Cherry (Prunus avium L.) Fruit, Plant Sci., 2001, vol. 160, pp. 795–805.

    Article  PubMed  CAS  Google Scholar 

  63. Li, S.C., Han, J.W., Chen, K.C., and Chen, C.S., Purification and Characterization of Isoforms of b-Galactosidases in Mung Bean Seedlings, Phytochemistry, 2001, vol. 57, pp. 349–359.

    Article  PubMed  CAS  Google Scholar 

  64. Cicek, M. and Esen, A., Structure and Expression of a Dhurrinase (β-Glucosidase) from Sorghum, Plant Physiol., 1998, vol. 116, pp. 1469–1478.

    Article  PubMed  CAS  Google Scholar 

  65. Sue, M., Ishihara, A., and Iwamura, H., Purification and Characterization of a Hydroxamic Acid Glucoside b-Glucosidase from Wheat (Triticum aestivum L.) Seedlings, Planta, 2001, vol. 210, pp. 432–438.

    Article  Google Scholar 

  66. Brzobohaty, B., Moore, I., Kristoffersen, P., et al., Release of Active Cytokinin by a β-Glucosidase Localized to the Maize Root Meristem, Science, 1993, vol. 262, pp. 1051–1054.

    Article  PubMed  CAS  Google Scholar 

  67. Chong, J., Baltz, R., Schmitt, C., et al., Downregulation of a Pathogen-Responsive Tobacco UDPGlc: Phenylpropanoid Glucosyltransferase Reduces Scopoletin Glucoside Accumulation, Enhances Oxidative Stress, and Weakens Virus Resistance, Plant Cell, 2002, vol. 14, pp. 1093–1107.

    Article  PubMed  CAS  Google Scholar 

  68. Fujiki, Y., Yoshikawa, Y., Sato, T., et al., Dark-Inducible Genes from Arabidopsis thaliana Are Associated with Leaf Senescence and Repressed by Sugars, Physiol. Plant., 2001, vol. 111, pp. 345–352.

    Article  PubMed  CAS  Google Scholar 

  69. Seki, M., Narusaka, M., Abe, H., et al., Monitoring the Expression Pattern of 1300 Arabidopsis Genes under Drought and Cold Stresses by Using a Full-Length cDNA Microarray, Plant Cell, 2001, vol. 13, pp. 61–72.

    Article  PubMed  CAS  Google Scholar 

  70. Chen, W.Q., Provart, N.J., Glazebrook, J., et al., Expression Profile Matrix of Arabidopsis Transcription Factor Genes Suggests Their Putative Functions in Response to Environmental Stresses, Plant Cell, 2002, vol. 14, pp. 559–574.

    Article  PubMed  CAS  Google Scholar 

  71. Bressan, R.A., Hasegawa, P.M., and Pardo, J.M., Plants Use Calcium to Resolve Salt Stress, Trends Plant Sci., 1998, vol. 3, pp. 411–412.

    Article  Google Scholar 

  72. Chaves, M.M. and Oliveira, M.M., Mechanisms Underlying Plant Resilience to Water Deficits: Prospects for Water-Saving Agriculture, J. Exp. Botany, 2004, vol. 55, pp. 2365–2384.

    Article  CAS  Google Scholar 

  73. Riechmann, J.L., Heard, J., Martin, G., et al., Arabidopsis Transcription Factors: Genome-Wide Comparative Analysis among Eukaryotes, Science, 2000, vol. 290, pp. 2105–2110.

    Article  PubMed  CAS  Google Scholar 

  74. Yamaguchi-Shinozaki, K. and Shinozaki, K., A Novel Cis-Acting Element in an Arabidopsis Gene Is Involved in Responsiveness to Drought, Low-Temperature, or High-Salt Stress, Plant Cell, 1994, vol. 6, pp. 251–264.

    Article  PubMed  CAS  Google Scholar 

  75. Fowler, S.G., Cook, D., and Thomashow, M.F., Low Temperature Induction of Arabidopsis CBF1, v2, and 3 Is Gated by the Circadian Clock, Plant Physiol., 2005, vol. 137, pp. 961–968.

    Article  PubMed  CAS  Google Scholar 

  76. Liu, Q., Kasuga, M., Sakuma, Y., et al., Two Transcription Factors, DREB1 and DREB2, with an EREBP/AP2 DNA Binding Domain, Separate Two Cellular Signal Transduction Pathways in Drought- and Low Temperature-Responsive Gene Expression, Respectively, in Arabidopsis, Plant Cell, 1998, vol. 10, pp. 1391–1406.

    Article  PubMed  CAS  Google Scholar 

  77. Nakashima, K., Shinwari, Z.K., Sakuma, Y., et al., Organization and Expression of Two Arabidopsis DREB2 Genes Encoding DRE-Binding Proteins Involved in Dehydration- and High-Salinity-Responsive Gene Expression, Plant Mol. Biol., 2000, vol. 42, pp. 657–665.

    Article  PubMed  CAS  Google Scholar 

  78. Egawa, C., Kobayashi, F., Ishibashi, M., et al., Differential Regulation of Transcript Accumulation and Alternative Splicing of a DREB2 Homolog under Abiotic Stress Conditions in Common Wheat, Genes Genet. Syst., 2006, vol. 81. pp. 77-91.

  79. Sakuma, Y., Maruyama, K., Osakabe, Y., et al., Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression, Plant Cell, 2006, vol. 18, pp. 1292–1309.

    Article  PubMed  CAS  Google Scholar 

  80. Lim, C.J., Hwang, J.E., Chen, H., et al., Over-Expression of the Arabidopsis DRE/CRT-Binding Transcription Factor DREB2C Enhances Thermotolerance, Biochem. Biophys. Res. Commun., 2007, vol. 362, pp. 431–436.

    Article  PubMed  CAS  Google Scholar 

  81. Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F., Arabidopsis thaliana CBF1 Encodes an AP2 Domain-Containing Transcriptional Activator That Binds to the C-Repeat/DRE, a cis-Acting DNA Regulatory Element That Stimulates Transcription in Response to Low Temperature and Water Deficit, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  82. Kasuga, M., Liu, Q., Miura, S., et al., Improving Plant Drought, Salt, and Freezing Tolerance by Gene Transfer of a Single Stress-Inducible Transcription Factor, Nat. Biotechnol., 1999, vol. 17, pp. 287–291.

    Article  PubMed  CAS  Google Scholar 

  83. Gilmour, S.J., Fowler, S.G., and Thomashow, M.F., Arabidopsis Transcriptional Activators CBF1, CBF2, and CBF3 Have Matching Functional Activities, Plant Mol. Biol., 2004, vol. 54, pp. 767–781.

    Article  PubMed  CAS  Google Scholar 

  84. Hsieh, T.H., Lee, J.T., Yang, P.T., et al., Heterology Expression of the Arabidopsis C-Repeat/Dehydration Response Element Binding Factor 1 Gene Confers Elevated Tolerance to Chilling and Oxidative Stresses in Transgenic Tomato, Plant Physiol., 2002, vol. 129, pp. 1086–1094.

    Article  PubMed  CAS  Google Scholar 

  85. Hsieh, T.H., Lee, J.T., Charng, Y.Y., and Chan, M.T., Tomato Plants Ectopically Expressing Arabidopsis CBF1 Show Enhanced Resistance to Water Deficit Stress, Plant Physiol., 2002, vol. 130, pp. 618–626.

    Article  PubMed  CAS  Google Scholar 

  86. Chinnusamy, V., Ohta, M., Kanrar, S., et al., ICE1: A Regulator of Cold-Induced Transcriptome and Freezing Tolerance in Arabidopsis, Genes Dev., 2003, vol. 17, pp. 1043–1054.

    Article  PubMed  CAS  Google Scholar 

  87. Anthony-Cahill, J., Benfield, P.A., Fairman, R., et al., Molecular Characterization of Helix-Loop Helix Peptides, Science, 1992, vol. 255, pp. 979–983.

    Article  PubMed  CAS  Google Scholar 

  88. Ellenberger, T., Fass, D., Arnaud, M., and Harrison, M., Crystal Structure of Transcription Factor E47: E-Box Recognition by a Basic Region Helix-Loop-Helix Dimmer, Genes Dev., 1994, vol. 8, pp. 970–980.

    Article  PubMed  CAS  Google Scholar 

  89. Dong, C.H., Agarwal, M., Zhang, Y., et al., The Negative Regulator of Plant Cold Responses, HOS1, is a RING E3 Ligase That Mediates the Ubiquitination and Degradation of ICE1, Proc. Natl. Acad. Sci. USA, 2006, vol. 10, pp. 8281–8286.

    Article  CAS  Google Scholar 

  90. Miura, K., Jin, J.B., and Lee, J., SIZ1-Mediated Sumoylation of ICE1 Controls CBF3/DREB1A Expression and Freezing Tolerance in Arabidopsis, Plant Cell., 2007, vol. 19, pp. 1403–1414.

    Article  PubMed  CAS  Google Scholar 

  91. Xiong, L., Ishitani, M., Lee, H., and Zhu, J-K., HOS5—a Negative Regulator of Osmotic Stress-Induced Gene Expression in Arabidopsis thaliana, Plant J., 1999, vol. 19, pp. 569–578.

    Article  PubMed  CAS  Google Scholar 

  92. Fursova, O.V., Pogorelko, G.V., and Tarasov, V.A., Identification of ICE2, a Gene Involved in Cold Acclimation Which Determines Freezing Tolerance in Arabidopsis thaliana, Gene, 2009, vol. 429, pp. 98–103.

    PubMed  CAS  Google Scholar 

  93. Zarka, D.G., Vogel, J.T., Cook, D., and Thomashow, M.F., Cold Induction of Arabidopsis CBF Genes Involves Multiple ICE (Inducer of CBF Expression) Promoter Elements and a Cold-Regulatory Circuit That Is Desensitized by Low Temperature, Plant Physiol., 2003, vol. 133, pp. 910–918.

    Article  PubMed  CAS  Google Scholar 

  94. Doherty, C.G., Van Buskirk, H.A., Myers, S.J., and Thomashow, M.F., Roles for Arabidopsis CAMTA Transcription Factors in Cold-Regulated Gene Expression and Freezing Tolerance, Plant Cell., 2009, vol. 21, pp. 972–984.

    Article  PubMed  CAS  Google Scholar 

  95. Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., et al., Roles of the CBF2 and ZAT12 Transcription Factors in Configuring the Low Temperature Transcriptome of Arabidopsis, Plant J., 2005, vol. 41, pp. 195–211.

    Article  PubMed  CAS  Google Scholar 

  96. Fowler, S. and Thomashow, M.F., Arabidopsis Transcriptome Profiling Indicates That Multiple Regulatory Pathways Are Activated during Cold Acclimation in Addition to the CBF Cold Response Pathway, Plant Cell., 2002, vol. 14, pp. 1675–1690.

    Article  PubMed  CAS  Google Scholar 

  97. Ohta, M., Matsui, K., Hiratsu, K., et al., Repression Domens of Class II ERF Transcriptional Repressors Share an Essential Motif for Active Repression, Plant Cell, 2001, vol. 13, pp. 1959–1968.

    Article  PubMed  CAS  Google Scholar 

  98. Lee, H., Guo, Y., Ohta, M., et al., LOS2, a Genetic Locus Required for Cold-Responsive Gene Transcription Encodes a Bi-Functional Enolase, EMBO J., 2002, vol. 21, pp. 2692–2702.

    Article  PubMed  CAS  Google Scholar 

  99. Nakashima, K., Kiyosue, T., Yamaguchi-Shinozaki, K., and Shinozaki, K., A Nuclear Gene, erd1, Encoding a Chloroplast-Targeted Clp Protease Regulatory Subunit Homolog Is not only Induced by Water Stress but also Developmentally Up-Regulated during Senescence in Arabidopsis thaliana, Plant J., 1997, vol. 12, pp. 851–861.

    Article  PubMed  CAS  Google Scholar 

  100. Simpson, S.D., Nakashima, K., Narusaka, Y., et al., Two Different Novel cis-Acting Elements of erd1, a clpA Homologous Arabidopsis Gene Function in Induction by Dehydration Stress and Dark-Induced Senescence, Plant J., 2003, vol. 33, pp. 259–270.

    Article  PubMed  CAS  Google Scholar 

  101. Tran, L.S., Nakashima, K., Sakuma, Y., et al., Co-Expression of the Stress-Inducible Zinc Finger Homeodomain ZFHD1 and NAC Transcription Factors Enhances Expression of the ERD1 Gene in Arabidopsis, Plant J., 2007, vol. 49, pp. 46–63.

    Article  PubMed  CAS  Google Scholar 

  102. Tran, L.S., Nakashima, K., Sakuma, Y., et al., Isolation and Functional Analysis of Arabidopsis Stress-Inducible NAC Transcription Factors That Bind to a Drought-Responsive Cis-Element in the Early Responsive to Dehydration Stress 1 Promoter, Plant Cell, 2004, vol. 16, pp. 2481–2498.

    Article  PubMed  CAS  Google Scholar 

  103. Hu, H., Dai, M., Yao, J., et al., Overexpressing a NAM, ATAF, and CUC (NAC) Transcription Factor Enhances Drought Resistance and Salt Tolerance in Rice, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 12987–12992.

    Article  PubMed  CAS  Google Scholar 

  104. Choi, H., Hong, J., Ha, J., et al., ABFs, a Family of ABA-Responsive Element Binding Factors, J. Biol. Chem., 2000, vol. 275, pp. 1723–1730.

    Article  PubMed  CAS  Google Scholar 

  105. Furihata, T., Maruyama, K., Fujita, Y., et al., ABA-Dependent Multisite Phosphorylation Regulates the Activity of a Transcription Activator AREB1, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 1988–1993.

    Article  PubMed  CAS  Google Scholar 

  106. Lang, V. and Palva, E.T., The Expression of a rab-Related Gene, rab18, is Induced by Abscisic Acid during the Cold Acclimation Process of Arabidopsis thaliana (L.) Heynh., Plant Mol. Biol., 1992, vol. 20, pp. 951–962.

    Article  PubMed  CAS  Google Scholar 

  107. Mustilli, A.C., Merlot, S., Vavasseur, A., et al., Arabidopsis OST1 Protein Kinase Mediates the Regulation of Stomatal Aperture by Abscisic Acid and Acts Upstream of Reactive Oxygen Species Production, Plant Cell, 2002, vol. 14, pp. 3089–3099.

    Article  PubMed  CAS  Google Scholar 

  108. Umezawa, T., Yoshida, R., Maruyama, K., et al., SRK2C, a SNF1-Related Protein Kinase 2, Improves Drought Tolerance by Controlling Stress-Responsive Gene Expression in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 17306–17311.

    Article  PubMed  CAS  Google Scholar 

  109. Baena-Gonzalez, E., Rolland, F., Thevelein, J.M., and Sheen, J., A Central Integrator of Transcription Networks in Plant Stress and Energy Signaling, Nature, 2007, vol. 448, pp. 938–942.

    Article  PubMed  CAS  Google Scholar 

  110. Abe, H., Urao, T., Ito, T., et al., Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) Function as Transcriptional Activators in Abscisic Acid Signaling, Plant Cell, 2003, vol. 15, pp. 63–78.

    Article  PubMed  CAS  Google Scholar 

  111. Seo, P.J. and Park, C.-M., A Membrane-Bound NAC Transcription Factor as an Integrator of Biotic and Abiotic Stress Signals, Plant Signal Behav., 2010, vol. 5, pp. 481–483.

    CAS  Google Scholar 

  112. Van Buskirk, H.A. and Thomashow, M.F., Arabidopsis Transcription Factors Regulating Cold Acclimation, Physiol. Plantarum, 2006, vol. 126, pp. 72–80.

    Article  Google Scholar 

  113. Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, H., Genome-Wide Analysis of the ERF Gene Family in Arabidopsis and Rice, Plant Physiol., 2006, vol. 140, pp. 411–432.

    Article  PubMed  CAS  Google Scholar 

  114. Karaba, A., Dixit, S., and Greco, R., Improvement of Water Use Efficiency in Rice by Expression of HARDY, an Arabidopsis Drought and Salt Tolerance Gene, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 15270–15275.

    Article  PubMed  CAS  Google Scholar 

  115. Xin, Z., Mandaokar, A., Chen, J., et al., Arabidopsis ESK1 Encodes a Novel Regulator of Freezing Tolerance, Plant J., 2007, vol. 49, pp. 786–799.

    Article  PubMed  CAS  Google Scholar 

  116. Cao, S., Ye, M., and Jiang, S., Involvement of GIGANTEA gene in the Regulation of the Cold Stress Response in Arabidopsis, Plant Cell Rep., 2005, vol. 24, pp. 683–690.

    Article  PubMed  CAS  Google Scholar 

  117. Harmer, S.L., Hogenesch, J.B., Straume, M., et al., Orchestrated Transcription of Key Pathways in Arabidopsis by the Circadian Clock, Science, 2000, vol. 290, pp. 2110–2113.

    Article  PubMed  CAS  Google Scholar 

  118. Webb, A.A.R., The Physiology of Circadian Rhythms in Plants, New Phytol., 2003, vol. 160, pp. 281–303.

    Article  CAS  Google Scholar 

  119. Alabadi, D., Oyama, T., Yanovsky, M., et al., Reciprocal Regulation between TOC1 and LHY/CCA1 within the Arabidopsis Circadian Clock, Science, 2001, vol. 293, pp. 880–883.

    Article  PubMed  CAS  Google Scholar 

  120. Mizuno, T. and Nakamichi, N., Pseudo-Response Regulators (PRRs) or True Oscillator Components (TOCs), Plant Cell Physiol., 2005, vol. 46, pp. 677–685.

    Article  PubMed  CAS  Google Scholar 

  121. Gardner, M.J., Hubbard, K.E., Hotta, C.T., et al., How Plants Tell the Time, Biochem. J., 2006, vol. 397, pp. 15–24.

    Article  PubMed  CAS  Google Scholar 

  122. McClung, C.R., Plant Circadian Rhythms, Plant Cell, 2006, vol. 18, pp. 792–803.

    Article  PubMed  CAS  Google Scholar 

  123. Eriksson, M.E., Hanano, S., Southern, M.M., et al., Response Regulator Homologues Have Complementary, Light-Dependent Functions in the Arabidopsis Circadian Clock, Planta, 2003, vol. 218, pp. 159–162.

    Article  PubMed  CAS  Google Scholar 

  124. Farré, E.M., Harmer, S.L., Harmon, F.G., et al., Overlapping and Distinct Roles of PRR7 and PRR9 in the Arabidopsis Circadian Clock, Curr. Biol., 2005, vol. 15, pp. 47–54.

    Article  PubMed  CAS  Google Scholar 

  125. Nakamichi, N., Kita, M., Ito, S., et al., PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, Together Play Essential Roles Close to the Circadian Clock of Arabidopsis thaliana, Plant Cell Physiol., 2005, vol. 46, pp. 686–698.

    Article  PubMed  CAS  Google Scholar 

  126. Salome, P.A. and McClung, C.R., PSEUDO-RESPONSE REGULATOR 7 and 9 Are Partially Redundant Genes Essential for the Temperature Responsiveness of the Arabidopsis Circadian Clock, Plant Cell, 2005, vol. 17, pp. 791–803.

    Article  PubMed  CAS  Google Scholar 

  127. Farré, E.M. and Kay, S.A., PRR7 Protein Levels are Regulated by Light and the Circadian Clock in Arabidopsis, Plant J., 2007, vol. 52, pp. 548–560.

    Article  PubMed  CAS  Google Scholar 

  128. Matsushika, A., Makino, S., Kojima, M., and Mizuno, T., Circadian Waves of Expression of the APRR1/TOC1 Family of Pseudo-Response Regulators in Arabidopsis thaliana: Insight into the Plant Circadian Clock, Plant Cell Physiol., 2000, vol. 41, pp. 1002–1012.

    Article  PubMed  CAS  Google Scholar 

  129. Andrés-Colás, N., Perea-García, A., Puig, S., and Peñarrubia, L., Deregulated Copper Transport Affects Arabidopsis Development Especially in the Absence of Environmental Cycles, Plant Physiol., 2010, vol. 153, pp. 170–184.

    Article  PubMed  CAS  Google Scholar 

  130. Kreps, J.A., Wu, Y.J., Chang, H.S., et al., Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress, Plant Physiol., 2002, vol. 130, pp. 2129–2141.

    Article  PubMed  CAS  Google Scholar 

  131. Carpenter, C.D., Kreps, J.A., and Simon, A.E., Genes Encoding Glycine-Rich Arabidopsis thaliana Proteins with RNA-Binding Motifs Are Influenced by Cold Treatment and an Endogenous Circadian Rhythm, Plant Physiol., 1994, vol. 104, pp. 1015–1025.

    Article  PubMed  CAS  Google Scholar 

  132. Bieniawska, Z., Espinoza, C., Schlereth, A., et al., Disruption of the Arabidopsis Circadian Clock Is Responsible for Extensive Variation in the Cold-Responsive Transcriptome, Plant Physiol., 2008, vol. 147, pp. 263–279.

    Article  PubMed  CAS  Google Scholar 

  133. Espinoza, C., Bieniawska, Z., Hincha, D.K., and Hannah, M.A., Interactions between the Circadian Clock and Cold-Response in Arabidopsis, Plant Signal Behav., 2008, vol. 3, pp. 593–594.

    Article  PubMed  Google Scholar 

  134. Dodd, A.N., Jakobsen, M.K., Baker, A.J., et al., Time of Day Modulates Low-Temperature Ca2+ Signals in Arabidopsis, Plant J., 2006, vol. 48, pp. 962–973.

    Article  PubMed  CAS  Google Scholar 

  135. Kagaya, Y., Ohmiya, K., and Hattori, T., RAV1, a Novel DNA-Binding Protein, Binds to Bipartite Recognition Sequence through Two Distinct DNA-Binding Domains Uniquely Found in Higher Plants, Nucleic Acids Res., 1999, vol. 27, pp. 470–478.

    Article  PubMed  CAS  Google Scholar 

  136. Rizhsky, L., Davletova, S., Liang, H., and Mittler, R., The Zinc Finger Protein Zat12 is Required for Cytosolic Ascorbate Peroxidase 1 Expression during Oxidative Stress in Arabidopsis, J. Biol. Chem., 2004, vol. 279, pp. 11736–11743.

    Article  PubMed  CAS  Google Scholar 

  137. Ledger, S., Strayer, C., Ashton, F., et al., Analysis of the Function of Two Circadian-Regulated CONSTANS-LIKE Genes, Plant J., 2001, vol. 26, pp. 15–22.

    Article  PubMed  CAS  Google Scholar 

  138. Rikin, A., Dillwith, J.W., and Bergman, D.K., Correlation between the Circadian Rhythm of Resistance to Extreme Temperatures and Changes in Fatty Acid Composition in Cotton Seedlings, Plant Physiol., 1993, vol. 101, pp. 31–36.

    PubMed  CAS  Google Scholar 

  139. Couderchet, M. and Koukkari, W.L., Cold Sensitivity Oscillations of Young Soybean Plants, Prog. Clin. Biol. Res., 1987, vol. 227A, pp. 59–65.

    PubMed  CAS  Google Scholar 

  140. Ramos, A., Pérez-Solís, E., Ibáñez, C., et al., Winter Disruption of the Circadian Clock in Chestnut, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 7037–7042.

    Article  PubMed  CAS  Google Scholar 

  141. Schaffer, R., Landgraf, J., Accerbi, M., et al., Microarray Analysis of Diurnal and Circadian-Regulated Genes in Arabidopsis, Plant Cell, 2001, vol. 13, pp. 113–123.

    Article  PubMed  CAS  Google Scholar 

  142. Michael, T.P. and McClung, C.R., Enhancer Trapping Reveals Widespread Circadian Clock Transcriptional Control in Arabidopsis, Plant Physiol., 2003, vol. 132, pp. 629–639.

    Article  PubMed  CAS  Google Scholar 

  143. Chiara-Magnone, M., Jacobmeier, B., et al., Circadian Expression of the Clock Gene Per2 Is Altered in the Ruin Lizard (Podarcis sicula) When Temperature Changes, Mol. Brain Res., 2005, vol. 133, pp. 281–285.

    Article  CAS  Google Scholar 

  144. Vallone, D., Frigato, E., Vernesi, C., et al., Hypothermia Modulates Circadian Clock Gene Expression in Lizard Peripheral Tissues, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, vol. 292, pp. 160–166.

    Article  CAS  Google Scholar 

  145. Ibáñez, C., Ramos, A., Acebo, P., et al., Overall Alteration of Circadian Clock Gene Expression in the Chestnut Cold Response, PLoS ONE, 2008. doi:10.1371/journal.pone.0003567.

  146. Bergmann, D.C. and Sack, F.D., Stomatal Development, Annu. Rev. Plant Biol., 2007, vol. 58, pp. 163–181.

    Article  PubMed  CAS  Google Scholar 

  147. Kanaoka, M.M., Pillitteri, L.J., Fujii, H., et al., SCREAM/ICE1 and SCREAM2 Specify Three Cell-State Transitional Steps Leading to Arabidopsis Stomatal Differentiation. Plant Cell, 2008, vol. 20, pp. 1775–1785.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kurbidaeva.

Additional information

Original Russian Text © A.S. Kurbidaeva, M.G. Novokreshchenova, 2011, published in Genetika, 2011, Vol. 47, No. 6, pp. 735–751.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurbidaeva, A.S., Novokreshchenova, M.G. Genetic control of plant resistance to cold. Russ J Genet 47, 646–661 (2011). https://doi.org/10.1134/S1022795411050115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795411050115

Keywords

Navigation