Skip to main content

Advertisement

Log in

Cyanobacterial cell division: Genetics and comparative genomics of cyanobacterial cell division

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Division of cyanobacteria serves as a model for studying division of plant chloroplasts. Analysis of mutants obtained by methods of “forward” and “reverse” genetics underlies effective strategy for studying genetics of cell division in these photoautotrophic prokaryotes. Comparative genomic analysis indicates that some cyanobacterial genes involved in the control of cell division have homologs among cyanobacteria, green algae, and higher plants, some others, only in bacteria, whereas the remaining genes are specific only for cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Hirota, Y., Ryter, A., and Jacob, F., Thermosensitive Mutants of Escherichia coli Affected in the Processes of DNA Synthesis and Cellular Division, Cold Spring Harbor Symp. Quant. Biol., 1968, no. 33, pp. 677–693.

  2. Bramhill, D., Bacterial Cell Division, Annu. Rev. Cell. Dev. Biol., 1997, vol. 13, pp. 395–424.

    Article  PubMed  CAS  Google Scholar 

  3. Shapiro, L. and Losick, R., Dynamic Spatial Regulation in the Bacterial Cell, Cell, 2000, vol. 100, pp. 89–98.

    Article  PubMed  CAS  Google Scholar 

  4. Howard, M. and Kruse, K., Cellular Organization by Self-Organization: Mechanisms and Models for Min Protein Dynamics, J. Cell Biol., 2005, vol. 168, pp. 533–536.

    Article  PubMed  CAS  Google Scholar 

  5. Dajkovic, A. and Lutkenhaus, J., Z Ring as Executor of Bacterial Cell Division, J. Mol. Microbiol. Biotechnol., 2006, vol. 11, pp. 140–151.

    Article  PubMed  CAS  Google Scholar 

  6. Michie, K.A. and Loewe, J., Dynamic Filaments of the Bacterial Cytoskeleton, Annu. Rev. Biochem., 2006, vol. 75, pp. 467–492.

    Article  PubMed  CAS  Google Scholar 

  7. Klint, J., Rasmussen, U., and Bergman, B., FtsZ May Have Dual Roles in the Filamentous Cyanobacterium Nostoc/Anabaena sp. Strain PCC 7120, J. Plant Physiol., 2007, vol. 164, pp. 11–18.

    Article  PubMed  CAS  Google Scholar 

  8. Ent, F., Amos, L.A., and Lowe, J., Prokaryotic Origin of the Actin Cytoskeleton, Nature, 2001, vol. 413, pp. 39–44.

    Article  PubMed  Google Scholar 

  9. Shih, Y.L., Le, T., and Rothfield, L., Division Site Selection in Escherichia coli Involves Dynamic Redistribution of Min Proteins within Coiled Structures That Extend between the Two Cell Poles, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 7865–7870.

    Article  PubMed  CAS  Google Scholar 

  10. Löwe, J., van den Ent, F., and Amos, L.A., Molecules of the Bacterial Cytoskeleton, Annu. Rev. Biophys. Biomol. Struct., 2004, vol. 33, pp. 177–198.

    Article  PubMed  Google Scholar 

  11. Bi, E. and Lutkenhaus, J., FtsZ Ring Structure Associated with Division in Escherichia coli, Nature, 1991, vol. 354, pp. 161–164.

    Article  PubMed  CAS  Google Scholar 

  12. Löwe, J. and Amos, L.A., Crystal Structure of the Bacterial Cell-Division Protein FtsZ, Nature, 1998, vol. 391, pp. 203–206.

    Article  PubMed  Google Scholar 

  13. Lutkenhaus, J. and Addinall, S.G., Bacterial Cell Division and the Z Ring, Annu. Rev. Biochem., 1997, vol. 66, pp. 93–116.

    Article  PubMed  CAS  Google Scholar 

  14. de Boer, P.A., Crossley, R.E., and Rothfield, L.I., A Division Inhibitor and a Topological Specificity Factor Coded for by the Minicell Locus Determine Proper Placement of the Division Septum in E. coli, Cell, 1989, vol. 56, pp. 641–649.

    Article  PubMed  Google Scholar 

  15. Raskin, D.M. and de Boer, P.A., Rapid Pole-to-Pole Oscillation of a Protein Required for Directing Division to the Middle of Escherichia coli, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 4971–4976.

    Article  PubMed  CAS  Google Scholar 

  16. Raskin, D.M. and de Boer, P.A., MinDE-Dependent Pole-to-Pole Oscillation of Division Inhibitor MinC in Escherichia coli, J. Bacteriol., 1999, vol. 181, pp. 6419–6424.

    PubMed  CAS  Google Scholar 

  17. Loose, M., Fischer-Friedrich, E., Ries, J., et al., Spatial Regulators for Bacterial Cell Division Self-Organize into Surface Waves in vitro, Science, 2008, vol. 320, pp. 789–792.

    Article  PubMed  CAS  Google Scholar 

  18. Koksharova, O.A. and Wolk, C.P., Genetic Tools for Cyanobacteria, Appl. Microbiol. Biotechnol., 2002, vol. 58, pp. 123–137.

    Article  PubMed  CAS  Google Scholar 

  19. Koksharova, O.A. and Wolk, C.P., A Novel Gene That Bears a DnaJ Motif Influences Cyanobacterial Cell Division, J. Bacteriol., 2002, vol. 184, pp. 5524–5528.

    Article  PubMed  CAS  Google Scholar 

  20. Koksharova, O.A., Application of Molecular Genetics and Microbiology Tools to Cyanobacterial Biotechnology and Ecology, Mikrobiologiya, 2010, vol. 79, no. 6, pp. 734–747.

    Google Scholar 

  21. Ingram, L.O. and Van Baalen, C., Characteristics of a Stable, Filamentous Mutant of a Coccoid Blue-Green Alga, J. Bacteriol., 1970, vol. 102, pp. 784–789.

    PubMed  CAS  Google Scholar 

  22. Ingram, L.O. and Fisher, W.D., Novel Mutant Impaired in Cell Division: Evidence for a Positive Regulating Factor, J. Bacteriol., 1973, vol. 113, pp. 999–1005.

    PubMed  CAS  Google Scholar 

  23. Zhevner, V.D., Glazer, V.M., and Shestakov, S.V., Mutants of Anacystis nidulans with Modified Cell Division, Mikrobiologiya, 1973, vol. 42, pp. 290–297.

    CAS  Google Scholar 

  24. Dolganov, N. and Grossman, A.R., Insertional Inactivation of Genes to Isolate Mutants of Synechococcus sp. Strain PCC 7942: Isolation of Filamentous Strains, J. Bacteriol., 1993, vol. 175, pp. 7644–7651.

    PubMed  CAS  Google Scholar 

  25. Labarre, J., Chauvat, F., and Thuriaux, P., Insertional Mutagenesis by Random Cloning of Antibiotic Resistance Genes into the Genome of the Cyanobacterium Synechocystis Strain PCC 6803, J. Bacteriol., 1989, vol. 171, pp. 3449–3457.

    PubMed  CAS  Google Scholar 

  26. Miyagishima, S., Wolk, C.P., and Osteryoung, K.W., Identification of Cyanobacterial Cell Division Genes by Comparative and Mutational Analyses, Mol. Microbiol., 2005, vol. 56, pp. 126–143.

    Article  PubMed  CAS  Google Scholar 

  27. Tandeau de Marsac, N., Borrias, W.E., Kuhlemeier, C.J., et al., A New Approach for Molecular Cloning in Cyanobacteria: Cloning of an Anacystis nidulans met Gene Using a Tn901-Induced Mutant, Gene, 1982, vol. 20, pp. 111–119.

    Article  PubMed  CAS  Google Scholar 

  28. Borthakur, D. and Haselkorn, R., Tn5 Mutagenesis of Anabaena sp. Strain PCC 7120: Isolation of a New Mutant Unable to Grow without Combined Nitrogen, J. Bacteriol., 1989, vol. 171, pp. 5759–5761.

    PubMed  CAS  Google Scholar 

  29. Wolk, C.P., Cai, Y., and Panoff, J.-M., Use of a Transposon with Luciferase as a Reporter to Identify Environmentally Responsive Genes in a Cyanobacterium, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 5355–5359.

    Article  PubMed  CAS  Google Scholar 

  30. Vitha, S., Froehlich, J.E., Koksharova, O.A., et al., ARC6 is a J-Domain Plastid Division Protein and an Evolutionary Descendant of the Cyanobacterial Cell Division Protein Ftn2, Plant Cell, 2003, vol. 15, pp. 1918–1933.

    Article  PubMed  CAS  Google Scholar 

  31. Mazouni, K., Domain, F., Cassier-Chauvat, C., and Chauvat, F., Molecular Analysis of the Key Cytokinetic Components of Cyanobacteria: FtsZ, ZipN and MinCDE, Mol. Microbiol., 2004, vol. 52, pp. 1145–1158.

    Article  PubMed  CAS  Google Scholar 

  32. Schmitz, O., Katayama, M., Williams, S.B., et al., CikA, a Bacteriophytochrome That Resets the Cyanobacterial Circadian Clock, Science, 2000, vol. 289, pp. 765–768.

    Article  PubMed  CAS  Google Scholar 

  33. Doherty, H.M. and Adams, D.G., Cloning and Sequence of FtsZ and Flanking Regions from the Cyanobacterium Anabaena PCC 7120, Gene, 1995, vol. 163, pp. 93–99.

    Article  PubMed  CAS  Google Scholar 

  34. Raynaud, C., Cassier-Chauvat, C., Perennes, C., and Bergounioux, C., An Arabidopsis Homolog of the Bacterial Cell Division Inhibitor SulA Is Involved in Plastid Division, Plant Cell, 2004, vol. 16, pp. 1801–1811.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang, C.-C., Huguenin, S., and Friry, A., Analysis of Genes Encoding the Cell Division Protein FtsZ and a Glutathione Synthetase Homologue in the Cyanobacterium Anabaena sp. PCC 7120, Res. Microbiol., 1995, vol. 146, pp. 445–455.

    Article  PubMed  CAS  Google Scholar 

  36. Kuhn, I., Peng, L., Bedu, S., and Zhang, C.-C., Developmental Regulation of the Cell Division Protein FtsZ in Anabaena sp. Strain PCC 7120, a Cyanobacterium Capable of Terminal Differentiation, J. Bacteriol., 2000, vol. 182, pp. 4640–4643.

    Article  PubMed  CAS  Google Scholar 

  37. Sarcina, M. and Mullineaux, C.W., Effects of Tubulin Assembly Inhibitors on Cell Division in Prokaryotes in vivo, FEMS Microbiol. Lett., 2000, vol. 191, pp. 25–29.

    Article  PubMed  CAS  Google Scholar 

  38. Strepp, R., Scholz, S., Kruse, S., et al., Plant Nuclear Gene Knockout Reveals a Role in Plastid Division for the Homolog of the Bacterial Cell Division Protein FtsZ, an Ancestral Tubulin, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 4368–4373.

    Article  PubMed  CAS  Google Scholar 

  39. Vitha, S., McAndrew, R.S., and Osteryoung, K.W., FtsZ Ring Formation at the Chloroplast Division Site in Plants, J. Cell Biol., 2001, vol. 153, pp. 111–119.

    Article  PubMed  CAS  Google Scholar 

  40. Mereschkowsky, C., Uber Natur und Ursprung der Chromatophoren im Pflanzenreiche, Biol. Centralbl, 1905, vol. 25, pp. 593–604.

    Google Scholar 

  41. Raven, J.A. and Allen, J.F., Genomics and Chloroplast Evolution: What Did Cyanobacteria Do for Plants?, Genome Biol., 2003, vol. 4, pp. 209.1–209.5.

    Article  Google Scholar 

  42. Martin, W. and Dagan, T., Genes of Cyanobacterial Origin in Plant Nuclear Genomes Point to a Heterocyst-Forming Plastid Ancestor, Mol. Biol. Evol., 2008, vol. 25, pp. 748–761.

    Article  PubMed  Google Scholar 

  43. Fulgosi, H., Gerdes, L., Westphal, S., et al., Cell and Chloroplast Division Requires ARTEMIS, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 11501–11506.

    Article  PubMed  CAS  Google Scholar 

  44. Maple, J., Fujiwara, M.T., Kitahata, N., et al., GIANT CHLOROPLAST 1 Is Essential for Correct Plastid Division in Arabidopsis, Curr. Biol., 2004, vol. 14, pp. 776–781.

    Article  PubMed  CAS  Google Scholar 

  45. Pyke, K.A., Rutherford, S.M., Robertson, E.J., and Leech, R.M., arc6: A Fertile Arabidopsis Mutant with Only Two Mesophyll Cell Chloroplasts, Plant Physiol., 1994, vol. 106, pp. 1169–1177.

    PubMed  CAS  Google Scholar 

  46. Maple, J., Aldridge, C., and Møller, S.G., Plastid Division Is Mediated by Combinatorial Assembly of Plastid Division Proteins, Plant J., 2005, vol. 43, pp. 811–823.

    Article  PubMed  CAS  Google Scholar 

  47. Maple, J. and Møller, S.G., Plastid Division: Evolution, Mechanism and Complexity, Ann. Botany, 2007, vol. 99, pp. 565–579.

    Article  CAS  Google Scholar 

  48. Raynaud, C., Cassier-Chauvat, C., Perennes, C., and Bergounioux, C., An Arabidopsis Homolog of the Bacterial Cell Division Inhibitor SulA Is Involved in Plastid Division, Plant Cell, 2004, vol. 16, pp. 1801–1811.

    Article  PubMed  CAS  Google Scholar 

  49. Suzuki, K., Nakanishi, H., Bower, J., et al., Plastid Chaperonin Proteins Cpn60alpha and Cpn60beta Are Required for Plastid Division in Arabidopsis thaliana, BMC Plant Biol., 2009, vol. 9, p. 38.

  50. Fujiwara, K. and Taguchi, H., Filamentous Morphology in GroE-Depleted Escherichia coli Induced by Impaired Folding of FtsE, J. Bacteriol., 2007, vol. 189, pp. 5860–5866.

    Article  PubMed  CAS  Google Scholar 

  51. Susin, M.F., Baldini, R.L., Gueiros-Filho, F., and Gomes, S.L., GroES/GroEL and DnaK/DnaJ Have Distinct Roles in Stress Responses and during Cell Cycle Progression in Caulobacter crescentus, J. Bacteriol., 2006, vol. 188, pp. 8044–8053.

    Article  PubMed  CAS  Google Scholar 

  52. Lemos, J.A., Luzardo, Y., and Burne, R.A., Physiologic Effects of Forced Downregulation of dnaK and groEL Expression in Streptococcus mutans, J. Bacteriol., 2007, vol. 189, pp. 1582–1588.

    Article  PubMed  CAS  Google Scholar 

  53. Koksharova, O.A., Klint, J., and Rasmussen, U., Comparative Proteomics of Cell Division Mutants and Wild-Type of Synechococcus sp. Strain PCC 7942, Microbiology, 2007, vol. 153, pp. 2505–2517.

    Article  PubMed  CAS  Google Scholar 

  54. Ent, F., Vinkenvleugel, T.M., Ind, A., et al., Structural and Mutational Analysis of the Cell Division Protein FtsQ, Mol. Microbiol., 2008, vol. 68, pp. 110–123.

    Article  PubMed  Google Scholar 

  55. Pogliano, J., Pogliano, K., Weiss, D.S., et al., Inactivation of FtsI Inhibits Constriction of the FtsZ Cytokinetic Ring and Delays the Assembly of FtsZ Rings at Potential Division Sites, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 559–564.

    Article  PubMed  CAS  Google Scholar 

  56. Corbin, B.D., Wang, Y., Beuria, T.K., and Margolin, W., Interaction between Cell Division Proteins FtsE and FtsZ, J. Bacteriol., 2007, vol. 189, pp. 3026–3035.

    Article  PubMed  CAS  Google Scholar 

  57. Mercer, K.L. and Weiss, D.S., The Escherichia coli Cell Division Protein FtsW Is Required to Recruit Its Cognate Transpeptidase, FtsI (PBP3), to the Division Site, J. Bacteriol., 2002, vol. 184, pp. 904–912.

    Article  PubMed  CAS  Google Scholar 

  58. Bukau, B. and Walker, G.C., Cellular Defects Caused by Deletion of the Escherichia coli dnaK Gene Indicate Roles for Heat Shock Protein in Normal Metabolism, J. Bacteriol., 1989, vol. 171, pp. 2337–2346.

    PubMed  CAS  Google Scholar 

  59. Nimura, K., Takahashi, H., and Yoshikawa, H., Characterization of the dnaK Multigene Family in the Cyanobacterium Synechococcus sp. Strain PCC7942, J. Bacteriol., 2001, vol. 183, pp. 1320–1328.

    Article  PubMed  CAS  Google Scholar 

  60. Lutkenhaus, J., Assembly Dynamics of the Bacterial MinCDE System and Spatial Regulation of the Z Ring, Annu. Rev. Biochem., 2007, vol. 76, pp. 539–562.

    Article  PubMed  CAS  Google Scholar 

  61. El Zoeiby, A., Sanschagrin, F., and Levesque, R.C., Structure and Function of the Mur Enzymes: Development of Novel Inhibitors, Mol. Microbiol., 2003, vol. 47, pp. 1–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Koksharova.

Additional information

Original Russian Text © O.A. Koksharova, M.M. Babykin, 2011, published in Genetika, 2011, Vol. 47, No. 3, pp. 293–300.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koksharova, O.A., Babykin, M.M. Cyanobacterial cell division: Genetics and comparative genomics of cyanobacterial cell division. Russ J Genet 47, 255–261 (2011). https://doi.org/10.1134/S1022795411030070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795411030070

Keywords