Skip to main content
Log in

Discordance in the distribution of markers of different inheritance systems (nDNA, mtDNA, and Chromosomes) in the superspecies complex Mus musculus as a result of extensive hybridization in primorye

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The genetic structure of eight Mus musculus L. populations in Primorskii krai was studied with the use of taxon-specific markers of different inheritance systems: nDNA (RAPD), mtDNA (D-loop), and chromosomes. The results obtained demonstrate that although the compared nuclear marker characteristics (nDNA and chromosomes) have the same basis they are not linke with each other and, moreover, are often mutually inconsistent. Discordance in the inheritance of the marker characteristics in most of the animals studied is a result of extensive hybridization involving two to four house mouse subspecies. To identify taxonspecific nuclear markers revealed by RAPD, some RAPD PCR products were cloned, and their localization on chromosomes was determined. It was found that some fragments similar in size consist of two different comigrating sequences that are localized on different chromosomes and belong to different subspecies. All sequenced anonymous markers are localized in protein-coding genes. The functions of genes containing the marker sequences have been established. Differences in the taxon-specific RAPD fragments are associated with changes in the structure of important functional genes, and this can be considered as a significant genetic marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferris, S.D., Sage, R.D., Huang, C.M., et al., Flow of Mitochondrial DNA across a Species Boundary, Proc. Natl. Acad. Sci. USA, 1983, vol. 80, pp. 2290–2294.

    Article  CAS  PubMed  Google Scholar 

  2. Powell, J.R., Interspecific Cytoplasmic Gene Flow in the Absence of Nuclear Gene Flow: Evidence from Drosophila, Proc. Natl. Acad. Sci. USA, 1983, vol. 80, pp. 492–495.

    Article  CAS  PubMed  Google Scholar 

  3. Spolsky, C. and Uzzell, T., Natural Interspecific Transfer of Mitochondrial DNA in Amphibians, Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 5802–5805.

    Article  CAS  PubMed  Google Scholar 

  4. Spiridonova, L.N., Korobitsyna, K.V., Yakimenko, L.V., and Bogdanov, A.S., Genetic Differentiation of Subspecies of the House Mouse Mus musculus and Their Taxonomic Relationships Inferred from RAPD-PCR Data, Russ. J. Genet., 2008, vol. 44, no. 6, pp. 732–739.

    Article  CAS  Google Scholar 

  5. Spiridonova, L.N., Chelomina, G.N., Morivaki, K., et al., Genetic and Taxonomic Diversity of the House Mouse Mus musculus from the Asian Part of the Former Soviet Union, Russ. J. Genet., 2004, vol. 40, no. 10, pp. 1134–1143.

    Article  CAS  Google Scholar 

  6. Seifert, B. and Goropashnaya, A.V., Ideal Phenotypes and Mismatching Haplotypes-Errors of mtDNA Treeing in Ants (Hymenoptera: Formicidae) Detected by Standardized Morphometry, Org. Diver. Evol., 2004, vol. 32, no. 4, pp. 295–305.

    Article  Google Scholar 

  7. Spiridonova, L.N., Chelomina, G.N., Tsuda, K., et al., Genetic Evidence of Extensive Introgression of Short-Tailed Ground Squirrel Genes in a Hybridization Zone of Spermophilus major and S. erythrogenys: Inferred from Sequencing of the mtDNA Cytochrome b Gene, Russ. J. Genet., 2006, vol. 42, no. 7, pp. 976–984.

    Article  CAS  Google Scholar 

  8. Grechko, V.V., Molecular DNA Markers in Phylogeny and Systematics, Russ. J. Genet., 2002, vol. 38, no. 8, pp. 851–868.

    Article  CAS  Google Scholar 

  9. Bannikova, A.A., Molecular Markers and Modern Phylogenetics of Mammals, Zh. Obshch. Biol., 2004, vol. 65, no. 4, pp. 278–305.

    CAS  PubMed  Google Scholar 

  10. Dean, R. and Arnold, J., Cytonuclear Disequilibria in Hybrid Zones Using RAPD-Markers, Evolution, 1996, vol. 50, no. 4, pp. 1702–1705.

    Article  Google Scholar 

  11. Harrison, R.G., Rand, D.M., and Wheeler, W.C., Mitochondrial DNA Variation in Field Crickets across a Narrow Hybrid Zone, Mol. Biol. Evol., 1987, vol. 4, no. 2, pp. 144–158.

    CAS  Google Scholar 

  12. Abramson, N.I., Phylogeography: Results, Problems, and Prospects, Vestn. VOGiS, 2007, vol. 11, no. 2, pp. 307–331.

    Google Scholar 

  13. Kholodova, M.V., Comparative Phylogeography: Molecular Methods, Ecological Interpretation, Izv. Akad. Nauk SSSR, Ser. Biol., 2009, vol. 43, no. 5, pp. 910–917.

    CAS  Google Scholar 

  14. Minezawa, M., Moriwaki, K., and Kondo, K., The Third Allele of Supernatant Isocitrate Dehydrogenase of House Mouse, Id-Ic Originates from Asian Continent, Jpn. J. Genet., 1980, vol. 55, no. 5, pp. 389–396.

    Article  Google Scholar 

  15. Mezhzherin, S.V. and Kotenkova, E.V., Genetic Marking of House Mouse Subspecies of the Soviet Union Fauna, Dokl. Akad. Nauk SSSR, 1989, vol. 304, no. 5, pp. 1271–1275.

    Google Scholar 

  16. Frisman, L.V., Korobitsyna, K.V., Yakimenko, L.V., and Vorontsov, N.N., What Biochemical Groups of House Mice Inhabit the Territory of the USSR, in Evolyutsionnye geneticheskie issledovaniya mlekopitayushchikh (Evolutionary Genetic Studies of Mammals), Vladivostok: Dalnevost. Otd. Akad. Nauk SSSR, 1990, vol. 1, pp. 35–54.

    Google Scholar 

  17. Korobitsyna, K.V. and Frisman, L.V., To the Systematics of the House Mouse of the Fauna of the Soviet Union (Cytogenetic Data), in Evolyutsionnye geneticheskie issledovaniya mlekopitayushchikh (Evolutionary Genetic Studies of Mammals), Vladivostok: Dalnevost. Otd. Akad. Nauk SSSR, 1990, vol. 1, pp. 55–78.

    Google Scholar 

  18. Yakimenko, L.V., Korobitsyna, K.V., Frisman, L.V., et al., Genetic Studies on House Mice from the Hybrid Zone of Primorskii Krai, Russ. J. Genet., 2000, vol. 36, no. 1, pp. 66–75.

    CAS  Google Scholar 

  19. Yonekawa, H., Tsuda, K., and Yakimenko, L.V., et al. Genetic Diversity, Geographic Distribution and Evolutionary Relationships of Mus musculus Subspecies Based on Polymorphisms of Mitochondrial DNA, in Problemy evolyutsii (Problems of Evolution), Vladivostok: Dal’nauka, 2003, vol. 5, pp. 90–108.

    Google Scholar 

  20. Aljanabi, S.M. and Martinez, I., Universal and Rapid Salt-Extraction of High Quality Genomic DNA for PCR-Based Techniques, Nucleic Acids Res., 1997, vol. 25, no. 22, pp. 4692–4693.

    Article  CAS  PubMed  Google Scholar 

  21. Prager, E.M., Sage, R.D., Gyllensten, U., et al., Mitochondrial DNA Sequence Diversity and the Colonization of Scandinavia by House Mice from East Holstein, Biol. J. Linnean Soc., 1993, vol. 50, pp. 85–122.

    Article  Google Scholar 

  22. Bonfield, J.K., Smith, K.F., and Staden, R., A New DNA Sequence Assembly Program, Nucl. Acids Res., 1995, vol. 23, pp. 4992–4999.

    Article  CAS  PubMed  Google Scholar 

  23. Tamura, K., Dudley, J., Nei, M., and Kumar, S., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0, Mol. Biol. Evol., 2007, vol. 24, pp. 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  24. Hadrys, H., Balick, M., and Schierwater, B., Applications of Random Amplified Polymorphic DNA (RAPD) in Molecular Ecology, Mol. Ecol., 1992, vol. 1, pp. 55–63.

    Article  CAS  PubMed  Google Scholar 

  25. Abdel Ghany, A.A. and Zaki, E.A., DNA Sequences of RAPD Fragments in the Egyptian Cotton Gossypium barbadense, African J. Biotechnol., 2003, vol. 2, no. 5, pp. 129–132.

    CAS  Google Scholar 

  26. White, M.J.D., Modes of Speciation, San Francisco: Freeman, 1978.

    Google Scholar 

  27. Lukhtanov, V.A. and Kuznetsova, V.G., Molecular and Cytogenetic Approaches to Species Diagnostics, Systematics, and Phylogenetics, Zh. Obshch. Biol., 2009, vol. 70, no. 5, pp. 415–437.

    CAS  PubMed  Google Scholar 

  28. Nokkala, C., Kuznetsova, V., Grozeva, S., and Nokkala, S., Direction of Karyotype Evolution in the Bug Family Nabidae (Heteroptera): New Evidence from 18S rDNA Analysis, Eur. J. Entomol., 2007, vol. 104, pp. 661–665.

    CAS  Google Scholar 

  29. Kozlovskii, A.I., Bulatova, N.Sh., and Orlov, V.N., Inadequate Interpretation of the Results of Cytogenetic and Biochemical Analyses of House Mice from Turkmenistan, Dokl. Akad. Nauk, 1997, vol. 353, no. 3, pp. 418–422.

    CAS  PubMed  Google Scholar 

  30. Lavrenchenko, L.A., Potapov, S.G., Bulatova, N.Sh., and Golenishchev, F.N., A Genetic Study of Natural Hybridization between Two 46-Chromosomic Forms of the Common Vole (Microtus arvalis) with the Use of Molecular and Cytogenetic Methods, in V s″ezd Vavilovskogo obshchestva genetikov i selektsionerov (5th Meeting of Vavilov Society of Geneticists and Breeders), Moscow, 2009, part 2, p. 288.

  31. Rafiev, A.N., Protein Polymorphism of House Mice (Genus Mus) on the Territory of the Soviet Union, Extended Abstract of Cand. Sci. Dissertation, Moscow: Institute of Animal Evolutionary Morphology and Ecology, Academy of Sciences of the Soviet Union, 1990, p. 19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Spiridonova.

Additional information

Original Russian Text © L.N. Spiridonova, K.V. Kiselev, K.V. Korobitsyna, 2011, published in Genetika, 2011, Vol. 47, No. 1, pp. 115–125.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiridonova, L.N., Kiselev, K.V. & Korobitsyna, K.V. Discordance in the distribution of markers of different inheritance systems (nDNA, mtDNA, and Chromosomes) in the superspecies complex Mus musculus as a result of extensive hybridization in primorye. Russ J Genet 47, 100–109 (2011). https://doi.org/10.1134/S1022795411010145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795411010145

Keywords

Navigation