Russian Journal of Genetics

, Volume 47, Issue 1, pp 56–65 | Cite as

Genetic polymorphism of flax Linum usitatissimum based on the use of molecular cytogenetic markers

  • O. A. Rachinskaya
  • V. A. Lemesh
  • O. V. Muravenko
  • O. Yu. Yurkevich
  • E. V. Guzenko
  • N. L. Bol’sheva
  • M. V. Bogdanova
  • T. E. Samatadze
  • K. V. Popov
  • S. V. Malyshev
  • N. G. Shostak
  • K. Heller
  • L. V. Hotyleva
  • A. V. Zelenin
Plant Genetics


Using a set of approaches based on the use of molecular cytogenetic markers (DAPI/C-banding, estimation of the total area of DAPI-positive regions in prophase nuclei, FISH with 26S and 5S rDNA probes) and the microsatellite (SSR-PCR) assay, we studied genomic polymorphism in 15 flax (Linum usitatissimum L.) varieties from different geographic regions belonging to three directions of selection (oil, fiber, and intermediate flax) and in the k-37 × Viking hybrid. All individual chromosomes have been identified in the karyotypes of these varieties on the basis of the patterns of differential DAPI/C-banding and the distribution of 26S and 5S rDNA, and idiograms of the chromosomes have been generated. Unlike the oil flax varieties, the chromosomes in the karyotypes of the fiber flax varieties have, as a rule, pericentromeric and telomeric DAPI-positive bands of smaller size, but contain larger intercalary regions. Two chromosome rearrangements (chromosome 3 inversions) were detected in the variety Luna and in the k-37 × Viking hybrid. In both these forms, no colocalization of 26S rDNA and 5S rDNA on the satellite chromosome was detected. The SSR assay with the use of 20 polymorphic pairs of primers revealed 22 polymorphic loci. Based on the SSR data, we analyzed genetic similarity of the flax forms studied and constructed a genetic similarity dendrogram. The genotypes studied here form three clusters. The oil varieties comprise an independent cluster. The genetically related fiber flax varieties Vita and Luna, as well as the landrace Lipinska XIII belonging to the intermediate type, proved to be closer to the oil varieties than the remaining fiber flax varieties. The results of the molecular chromosome analysis in the fiber and oil flax confirm their very close genetic similarity. In spite of this, the combined use of the chromosome and molecular markers has opened up unique possibilities for describing the genotypes of flax varieties and creating their genetic passports.


Fiber Flax Linum Usitatissimum Genomic Polymorphism Prophase Nucleus Flax Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Egorova, T.V., Family Linaceae DC. ex S.F. Gray—Flax Family, Flora Vostochnoi Evropy (Flora of Eastern Europe), 1996, vol.9, pp. 346–361.Google Scholar
  2. 2.
    Cullis, C.A., Molecular Aspects of the Environmental Induction of Heritable Changes in Flax, Heredity, 1981, vol.38, pp. 129–154.CrossRefGoogle Scholar
  3. 3.
    Cullis, C.A., Flax, in Genome Mapping and Molecular Breeding in Plants, 2007, vol.2, pp. 275–295.CrossRefGoogle Scholar
  4. 4.
    Fu, Y.B., Geographic Patterns of RAPD Variation in Cultivated Flax, Crop Sci., 2005, vol.45, no. 3, pp. 1084–1091.CrossRefGoogle Scholar
  5. 5.
    Vromans, J., Molecular Genetic Studies in Flax (Linum usitatissimum L.), PhD Thesis, Wageningen: Wageningen Univ., 2006.Google Scholar
  6. 6.
    Lemesh, V.A., Malyshev, S.V., Grushetskaya, Z.E., and Khotyleva, L.V., Application of RAPD-Analysis to Determination of the Taxonomic Status of Wild Relatives of Cultivated Flax, Dokl. Nats. Akad. Navuk Belarusi, 2001, vol.45, no. 3, pp. 88–90.Google Scholar
  7. 7.
    Fu, Y.B., Rowland, G.G., Duguid, S.D., and Richards, K.W., RAPD Analysis of 54 North American Flax Cultivars, Crop Sci., 2003, vol.43, no. 4, pp. 1510–1515.CrossRefGoogle Scholar
  8. 8.
    Lemesh, V.A., Shut, M.V., and Khotyleva, L.V., RAPD Analysis of Interspecific Polymorphism in Flax (Genus Linum L.), Inf. Vestn. VOGiS, 2005, vol.9, no. 4, pp. 490–494.Google Scholar
  9. 9.
    Lemesh, V.A., Bogdanova, M.V., and Khotyleva, L.V., RAPD Analysis of Interspecific Genetic Variation and Phylogenetic Relations of Flax Species (Genus Linum L.), Dokl. Nats. Akad. Navuk Belarusi, 2006, vol.50, no. 2, pp. 51–54.Google Scholar
  10. 10.
    Guzenko, E.V., Lemesh, V.A., and Khotyleva, L.V., Molecular-Genetic Analysis of Linseed Cultivars by the RAPD Method, Vestsi Nats. Akad. Navuk Belarusi, 2008, no. 2, pp. 41–45.Google Scholar
  11. 11.
    Roose-Amsaleg, C., Cariou-Pham, E., Vautrin, D., et al., Polymorphic Microsatellite Loci in Linum usitatissimum, Mol. Ecol. Notes, 2006, vol.6, pp. 796–799.CrossRefGoogle Scholar
  12. 12.
    Muravenko, O.V., Samatadze, T.E., Popov, K.V, et al., Polymorphism of Heterochromatic Regions of Flax Chromosome, Biol. Membrany, 2000, vol.17, no. 6, pp. 599–603.Google Scholar
  13. 13.
    Muravenko, O.V., Samatadze, T.E., Popov, K.V., et al., Square of Heterochromatic Regions in Nuclei and Chromosomes as an Measure of Genome Variation in Cultivated Flax, Biol. Membrany, 2007, vol.24, no. 6, pp. 435–441.Google Scholar
  14. 14.
    Muravenko, O.V. and Zelenin, A.V., Chromosome Organization of the Genomes of Small-Chromosome Plants, Russ. J. Genet., 2009, vol.45, no. 11, pp. 1338–1350.CrossRefGoogle Scholar
  15. 15.
    Muravenko, O.V., Bol’sheva, N.L., Yurkevich, O.Yu, et al., Karyogenomics of the Genus Linum L. Species, Russ. J. Genet., 2010, vol.46, no. 10, pp. 1178–1181.CrossRefGoogle Scholar
  16. 16.
    Semenova, O.Yu., Samatadze, T.E., Zelenin, A.V., and Muravenko, O.V., Comparative Study of the Species of Adenolinum and Stellerolinum Sections by Means of FISH Technique, Biol. Membrany, 2006, vol.23, no. 6, pp. 453–460.CrossRefGoogle Scholar
  17. 17.
    Nosova, I.V., Svetlova, A.A., Bol’sheva, N.L., and Muravenko, O.V., Chromosome Numbers of Species from Syllinum Section, Genus Linum (Linaceae), Botanicheskiy Zh., 2008, vol.91, no. 9, pp. 138–143.Google Scholar
  18. 18.
    Muravenko, O.V., Lemesh, V.A., Samatadze, T.E., et al., Genome Comparisons with Chromosome and Molecular Markers for Three Closely Related Flax Species and Their Hybrids, Russ. J. Genet., 2003, vol.39, no. 4, pp. 414–421.CrossRefGoogle Scholar
  19. 19.
    Muravenko, O.V., Amosova, A.V., Samatadze, T.E., et al., 9-Aminoacridine: An Efficient Reagent to Improve Human and Plant Chromosome Banding Patterns and to Standardize Chromosome Image Analysis, Cytometry, 2003, vol.51A, no. 1, pp. 52–57.CrossRefGoogle Scholar
  20. 20.
    Muravenko, O.V., Yurkevich, O.Yu., Bolsheva, N.L., et al., Comparison of Genomes of Eight Species of Sections Linum and Adenolinum from the Genus Linum Based on Chromosome Banding, Molecular Markers and RAPD Analysis, Genetics, 2009, vol.135, no. 2, pp. 245–255.Google Scholar
  21. 21.
    Malyshev, S.V., Urbanovich, O.Yu., and Kartel’, N.A., Identifikatsiya i pasportizatsiya sortov sel’skokhozyaistvennykh kul’tur (myagkoi pshenitsy, kartofelya, tomata, l’na i svekly) na osnove DNK markerov: metodicheskie rekombinatsii (Identification and Passportization of Crop Cultivars (Bread Wheat, Potato, Tomato, Flax, and Beet) Using DNA Markers: Methodic Recombinations), Minsk, 2006.Google Scholar
  22. 22.
    Anderson, J.A., Churchill, G.A., Autrique, J.E., et al., Optimizing Parental Selection for Genetic Linkage Maps, Genome, 1993, vol.36, no. 1, pp. 181–186.CrossRefPubMedGoogle Scholar
  23. 23.
    Jaccard, P., Nouvelles recherches sur la distribution florale, Bull. Soc. Vaud. Sci. Nat., 1908, vol.44, pp. 223–270.Google Scholar
  24. 24.
    Buntjer, J.B., Phyltools: Phylogenetic Computer Tools, Wageningen: Laboratory of Plant Breeding, 1997.Google Scholar
  25. 25.
    Saitou, N. and Nei, M., The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees, Mol. Biol. Evol., 1987, vol.4, pp. 406–425.PubMedGoogle Scholar
  26. 26.
    Felsenstein, J., Confidence Limits on Phylogenies: An Approach Using the Bootstrap, Evolution, 1985, vol.39, pp. 783–791.CrossRefGoogle Scholar
  27. 27.
    Lemesh, V., Identification of Flax Genotypes Using RAPD and SSR Markers, Lua Res. Papers, 2009, vol.82, no. 35, pp. 12–15.Google Scholar
  28. 28.
    Lemesh, V.A., Molecular Analysis of the Heterogeneity of the Belarusian Flax Cultivars and Landraces, Dokl. Nats. Akad. Navuk Belarusi, 2007, vol.51, no. 6, pp. 78–81.Google Scholar
  29. 29.
    Pignone, D., Galasso, I., Rossino, R., and Mezzanotte, R., Characterization of Dasypyrum villosum (L.) Candargy Chromosome Chromatin by Means of in situ Restriction Endonucleases, Fluorochromes, Silver Staining and C-Banding, Chromosome Res., 1995, vol.3, pp. 109–114.CrossRefPubMedGoogle Scholar
  30. 30.
    Peterson, D.G., Lapitan, N.L.V., and Stack, S.M., Localization of Singleand Low Copy Sequences on Tomato Synaptonemal Complex Spreads Using Fluorescence in situ Hybridization (FISH), Genetics, 1999, vol.152, pp. 427–439.PubMedGoogle Scholar
  31. 31.
    Scweizer, D., Fluorescent Chromosome Banding in Plants; Applications, Mechanisms, and Implications for Chromosome Structure, Theor. Appl. Genet., 1985, vol.71, no. 3, pp. 408–412.Google Scholar
  32. 32.
    Guerra, M., Patterns of Heterochromatin Distribution in Plant Chromosomes, Genet. Mol. Biol., 2000, vol.23, no. 4, pp. 1029–1041.Google Scholar
  33. 33.
    Mukai, Y., Endo, T.R., and Gill, B.S., Physical Mapping of the 18S–26S rRNA Multigene Family in Common Wheat: Identification of a New Locus, Chromosome, 1991, vol.100, pp. 71–78.CrossRefGoogle Scholar
  34. 34.
    Zsoldos, V., Papes, D., Cerah, M., et al., Molecular-Cytogenetic Studies of Ribosomal Genes and Heterochromatin Reveal Conserved Genome Organization among 11 Quercus Species, Theor. Appl. Genet., 1999, vol.99, pp. 969–977.CrossRefGoogle Scholar
  35. 35.
    Michkina, G.A., Popova, G.A., Chudinova, Yu.V., and Arkhipov, N.A., Genetic Diversity of Flax Cultivars of Tomsk Breeding, Vestn. VOGiS, vol.12, no. 4, pp. 698–700.Google Scholar
  36. 36.
    Len Belarusi (Flax of Belarus), Golub, I.A., Ed., Minsk: Orekh, 2003.Google Scholar
  37. 37.
    Allaby, R.G., Peterson, G.W., Merriwether, D.A., and Fu, Y.B., Evidence of the Domestication History of Flax (Linum usitatissimum L.) from Genetic Diversity of the sad2 Locus, Theor. Appl. Genet., 2005, vol.112, pp. 58–65.CrossRefPubMedGoogle Scholar
  38. 38.
    Prokofyeva-Belgovskaya, A.A., Geterokhromaticheskie raiony khromosom (Heterochromatic Regions of Chromosomes), Moscow: Nauka, 1986.Google Scholar
  39. 39.
    Muravenko, O.V., Badaev, N.S., Karryeva, G.V., and Zelenin, A.V., Chromosome Passport as a Cytogenetic Characteristic of Barley Cultivars, Dokl. Vses. Akad. S-kh. Nauk imeni Lenina, 1990, no. 3, pp. 4–8.Google Scholar
  40. 40.
    Badaeva, E.D., Badaev, N.S., Zosinova, L.F., and Turbin, N.V., Method of Differential Painting for Creation of “Chromosome Passport” for Cereals, S-kh. Biol., 1989, no. 1, pp. 68–72.Google Scholar
  41. 41.
    Cullis, C.A., Mobility of the Plant Genome, Moscow: Agropromizdat, 1990.Google Scholar
  42. 42.
    Yurkevich, O.Yu., Comparative Study of Flax Species Genomes from Linum, Adenolinum, and Stellerolinum Sections in the Genus Linum Using C/DAPI-Bending and Fluorescent Hybridization in situ (FISH), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2008, p. 26.Google Scholar
  43. 43.
    Vavilov, N.I., Centers of Origin of Cultivated Plants, Tr. Prikladnoi Botanike Genet. Sel., 1926, vol.16, no. 2, pp. 3–248.Google Scholar
  44. 44.
    Diederichsen, A. and Fu, Y.-B., Phenotypic and Molecular (RAPD) Differentiation of Four Intraspecific Groups of Cultivated Flax (Linum usitatissimum L. subsp. usitatissimum), Genet. Resour. Crop Evol., 2006, vol.53, pp. 77–90.CrossRefGoogle Scholar
  45. 45.
    Zohary, D. and Hopf, M., Domestication of Plants in the Old Word, Oxford: Clarendon, 1988.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • O. A. Rachinskaya
    • 1
  • V. A. Lemesh
    • 2
  • O. V. Muravenko
    • 1
  • O. Yu. Yurkevich
    • 1
  • E. V. Guzenko
    • 2
  • N. L. Bol’sheva
    • 1
  • M. V. Bogdanova
    • 2
  • T. E. Samatadze
    • 1
  • K. V. Popov
    • 1
  • S. V. Malyshev
    • 2
  • N. G. Shostak
    • 1
  • K. Heller
    • 3
  • L. V. Hotyleva
    • 2
  • A. V. Zelenin
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Genetics and CytologyNational Academy of Sciences of BelarusMinskBelarus
  3. 3.Institute of Natural Fibers and Medicinal PlantsPoznanPoland

Personalised recommendations