Skip to main content
Log in

Incomplete congruence between morphobiological characters and sex-specific molecular markers in pacific salmons: 2. Population and temporal variability of the phenomenon

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The congruence between secondary sexual characters and molecular markers, linked to the Ychromosome was examined in Asian populations of five Pacific salmon species of the genus Oncorhynchus. Our results support the existence of discrepancy between secondary sexual characters and sex-linked molecular markers in all species examined, which suggests the existence of similar or identical mechanism responsible for this phenomenon in Pacific salmons. Clinal latitudinal directional variation of the character confirmed the possibility that this phenomenon could be adaptively important, including its importance for regulation of the population number. In addition to natural factors affecting the degree of discrepancy between morphobiological characters and molecular markers in the Pacific salmon populations, anthropogenic factors, in particular intense fishery of certain population or population group, is also important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brykov, Vl.A., Kukhlevsky, A.D., and Podlesnykh, A.V., Incomplete Congruence between Morphobiological Characters and Sex-Specific Molecular Markers in Pacific Salmons: I. Analysis of Discrepancy in Five Species of the Genus Oncorhynchus, Russ. J. Genet., 2010, vol. 46, no. 7, pp. 867–872.

    Article  CAS  Google Scholar 

  2. Sambrook, J.F., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab. Press, 1989, 2nd ed.

    Google Scholar 

  3. Devlin, R.H., Biagi, C.A., and Smailus, D.E., Genetic Mapping of Y-Chromosomal Markers in Pacific Salmon, Genetics, 2001, vol. 111, pp. 43–58.

    CAS  Google Scholar 

  4. Zhang, Q., Nakayama, I., Fujiwara, A., et al., Sex Identification by Male-Specific Growth Hormone Pseudogene (GH-ξ) in Oncorhynchus masou Complex and a Related Hybrid, Genetics, 2001, vol. 111, pp. 111–118.

    CAS  Google Scholar 

  5. Brunelli, J.P. and Thorgaard, G.H., A New Y-Chromosome-Specific Marker for Pacific Salmon, Trans. Am. Fish. Soc., 2004, vol. 133, pp. 1247–1253.

    Article  CAS  Google Scholar 

  6. Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Akademkniga, 2003.

    Google Scholar 

  7. Varnavskaya, N.V., Geneticheskaya differentsiatsiya populyatsii tikhookeanskikh lososei (Genetic Differentiation in Pacific Salmon Populations), Petropavlovsk-Kamchatskii: Izd. KamchatNIRO, 2006.

    Google Scholar 

  8. Nagler, J.J., Bouma, J., Thorgaard, G.H., and Dauble, D.D., High Incidence of a Male-Specific Genetic Marker in the Phenotypic Female Chinook Salmon from the Columbia River, Environ. Health Perspectives, 2001, vol. 109, pp. 67–69.

    Article  CAS  Google Scholar 

  9. Williamson, K.S. and May, B., Incidence of Phenotypic Female Chinook Salmon Positive for the Male Y-Chromosome-Specific Marker OtY1 in the Central Valley, California, J. Aquat. Anim. Health, 2002, vol. 14, pp. 176–183.

    Article  Google Scholar 

  10. Chowen, T.R. and Nagler, J.J., Temporal and Spatial Occurrence of Female Chinook Salmon Carrying a Male-Specific Marker in the Columbia River Watershed, Environ. Biol. Fishes, 2004, vol. 697, pp. 427–432.

    Article  Google Scholar 

  11. Williamson, K.S. and May, B., Inheritance Studies Implicate a Genetic Mechanism for Apparent Sex Reversal in Chinook Salmon, Trans. Am. Fish. Soc., 2005, vol. 134, pp. 1253–1261.

    Article  Google Scholar 

  12. Devlin, R.H., Park, L., Sakhrani, D.M., et al., Variation of Chromosome DNA Markers in Chinook Salmon (Oncorhynchus tschawytscha) Populations, Can. J. Fish Aquat. Sci., 2005, vol. 62, pp. 1386–1399.

    Article  Google Scholar 

  13. Williamson, K.S., Phillips, R., and May, B., Characterization of a Chromosomal Rearrangement Responsible for Producing “Apparent” XY-Female Fall-Run Chinook Salmon in California, J. Hered., 2008, vol. 99, pp. 483–490.

    Article  CAS  PubMed  Google Scholar 

  14. Shinomiya, A., Otake, H., Togashi, K., et al., Field Survey of Sex-Reversals in the Medaka, Oryzias latipes: Genotypic Sexing of Wild Populations, Zool. Sci., 2004, vol. 21, pp. 613–619.

    Article  PubMed  Google Scholar 

  15. Scholz, S., Rosler, S., Schaffer, M., et al., Hormonal Induction and Stability of Monosex Populations in the Medaka (Oryzias latipes): Expression of Sex-Specific Marker Genes, Biol. Reprod., 2003, vol. 69, pp. 673–678.

    Article  CAS  PubMed  Google Scholar 

  16. Otake, H., Shinomiya, A., Matsuda, M., et al., Wild-Derived XY Sex-Reversal Mutants in the Medaka, Oryzias latipes, Genetics, 2006, vol. 173, pp. 2083–2090.

    Article  CAS  PubMed  Google Scholar 

  17. Devlin, R.H. and Nagahama, Y., Sex Determination and Sex Differentiation in Fish: An Overview of Genetic, Physiological, and Environmental Influences, Aquaculture, 2002, vol. 208, pp. 191–364.

    Article  CAS  Google Scholar 

  18. Arukwe, A., Cellular and Molecular Responses to Endocrine-Modulators and the Impact on Fish Reproduction, Mar. Pollut. Bull., 2001, vol. 42, no. 8, pp. 643–655.

    Article  CAS  PubMed  Google Scholar 

  19. Craig, J.K., Foote, C.J., and Wood, C.C., Evidence of Temperature-Dependent Sex Determination in Sockeye Salmon (Oncorhynchus nerka), Can. J. Fish. Aquat. Sci., 1996, vol. 138, pp. 141–147.

    Article  Google Scholar 

  20. Pandian, T.J. and Sheela, S.G., Hormonal Induction of Sex Reversal in Fish, Aquaculture, 1995, vol. 138, pp. 1–22.

    Article  CAS  Google Scholar 

  21. Pfierrer, F., Endocrine Sex Control Strategies for the Feminization of Teleost Fish, Aquaculture, 2001, vol. 197, pp. 229–281.

    Article  Google Scholar 

  22. Yamazaki, F., Sex Control and Manipulation in Fish, Aquaculture, 1983, vol. 33, pp. 329–354.

    Article  Google Scholar 

  23. Brykov, Vl.A., Kukhlevsky, A.D., Shevlyakov, E.A., et al., Sex Ratio Control in Pink Salmon (Oncorhynchus gorbuscha) and Chum Salmon (O. keta) Populations: The Possible Causes and Mechanisms of Changes in the Sex Ratio, Russ. J. Genet., 2008, vol. 44, no. 7, pp. 786–792.

    Article  CAS  Google Scholar 

  24. Cotton, S. and Wedekind, C., Population Consequences of Environmental Sex Reversal, Conservative Biol., 2008, vol. 23, pp. 196–206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vl. A. Brykov.

Additional information

Original Russian Text © Vl.A. Brykov, A.D. Kukhlevsky, A.V. Podlesnykh, 2010, published in Genetika, 2010, Vol. 46, No. 11, pp. 1533–1543.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brykov, V.A., Kukhlevsky, A.D. & Podlesnykh, A.V. Incomplete congruence between morphobiological characters and sex-specific molecular markers in pacific salmons: 2. Population and temporal variability of the phenomenon. Russ J Genet 46, 1352–1361 (2010). https://doi.org/10.1134/S1022795410110116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795410110116

Keywords

Navigation