Skip to main content
Log in

Domain organization of the ORF2 C-terminal region of the German cockroach retroposon R1

  • Molecular Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Using cosmid vector, a gene library of German cockroach Blattella germanica was constructed. From this library, clones containing full-length copies of two subfamilies of R1 retroposons were selected. Retroposons R1 of German cockroach belonging to different subfamilies were shown to be different in domain organization of the ORF2 C-terminal region. For the first time, retroposons transmembrane domains were identified in the sequences of R1. It was demonstrated that two retroposon R1 subfamilies of German cockroach arose as a result of intragenomic divergence rather than via horizontal transfer of alien mobile element into cockroach genome. The differences in domain organization appeared not as a result of saltatory recombination processes, but as a consequence of gradual mutation accumulation, which led to either degeneration, or to domain formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Finnegan, D.J., Transposable Elements: How Non-LTR Retrotransposons Do It, Current Biol., 1997, vol. 7, pp. 245–248.

    Article  Google Scholar 

  2. Eickbush, T.H. and Jamburuthugoda, V.K., The Diversity of Retrotransposons and the Properties of Their Reverse Transcriptases, Virus Res., 2008, vol. 134, pp. 221–234.

    Article  CAS  PubMed  Google Scholar 

  3. Malik, H.S., Burke, W.D., and Eickbush, T.H., The Age and Evolution of Non-LTR Retrotransposable Elements, Mol. Biol. Evol., 1999, vol. 16, pp. 793–805.

    CAS  PubMed  Google Scholar 

  4. Kojima, K.K. and Fujiwara, H., Evolution of Target Specificity in R1 Clade Non-LTR Retrotransposons, Mol. Biol. Evol., 2003, vol. 20, pp. 351–361.

    Article  CAS  PubMed  Google Scholar 

  5. Perez-Gonzalez, C.E. and Eickbush, T.H., Dynamics of R1 and R2 Elements in the rDNA Locus of Drosophila simulans, Genetics, 2001, vol. 158, pp. 1557–1567.

    CAS  PubMed  Google Scholar 

  6. Gentile, K.L., Burke, W.D., and Eickbush, T.H., Multiple Lineages of R1 Retrotransposable Elements Can Coexist in the rDNA Loci of Drosophila, Mol. Biol. Evol., 2001, vol. 18, pp. 235–245.

    CAS  PubMed  Google Scholar 

  7. Burke, W.D., Eickbush, D.G., Xiong, Y., et al., Sequence Relationship of Retrotransposable Elements R1 and R2 within and between Divergent Insect Species, Mol. Biol. Evol., 1993, vol. 10, pp. 163–185.

    CAS  PubMed  Google Scholar 

  8. McGraw, J.E. and Brookfield, J.F., The Interaction between Mobile DNAs and Their Hosts in a Fluctuating Environment, J. Theor. Biol., 2006, vol. 243, pp. 13–23.

    Article  CAS  PubMed  Google Scholar 

  9. Kagramanova, A.S., Kapelinskaya, T.V., Korolev, A.L., and Mukha, D.V., R1 and R2 Retrotransposons of German Cockroach Blatella germanica: A Comparative Study of 5’-Truncated Copies Integrated into the Genome, Mol. Biol., (Moscow), 2007, vol. 41, pp. 546–553.

    Article  CAS  Google Scholar 

  10. Kumar, S., Dudley, J., Nei, M., and Tamura, K., MEGA: A Biologist-Centric Software for Evolutionary Analysis of DNA and Protein Sequences, Briefings Bioinf., 2008, vol. 9, pp. 299–306.

    Article  CAS  Google Scholar 

  11. Letunic, I., Doerks, T., and Bork, P., SMART 6: Recent Updates and New Developments, Nucleic Acids Res., 2008, vol. 37, pp. D229–D232.

    Article  PubMed  Google Scholar 

  12. Nielsen, M., Lundegaard, C., Lund, O., and Petersen, T.N., CpHModels-3.0: Remote Homology Modeling Using Structure Guided Profile Sequence Alignment and Double-Sided Baseline Corrected Scoring Scheme, Worning Abstract at the CASP8 Conference 193.

  13. Aires, J.R., Köhler, T., Nikaido, H., and Plesiat, P., Involvement of an Active Efflux System in the Natural Resistance of Pseudomonas aeruginosa to Aminoglycosides, Antimicrob. Agents Chemother., 1999, vol. 43, pp. 2624–2628.

    CAS  PubMed  Google Scholar 

  14. Wong, K.K.Y., Brinkman, F.S.L., Benz, R.S., and Hancock, R.E.W., Evaluation of a Structural Model of Pseudomonas aeruginosa Outer Membrane Protein OprM, an Efflux Component Involved in Intrinsic Antibiotic Resistance, J. Bacteriol., 2001, vol. 183, pp. 367–374.

    Article  CAS  PubMed  Google Scholar 

  15. Malik, H.S. and Eickbush, T.H., NeSL-1, an Ancient Lineage of Site Specific Non-LTR Retrotransposones from Caenorhabditis elegans, Genetics, 2000, vol. 154, pp. 193–203.

    CAS  PubMed  Google Scholar 

  16. Ohno, S., Evolution by Gene Duplication, New York: Springer, 1970.

    Google Scholar 

  17. Deredec, A., Burt, A., and Godfray, H.C.J., The Population Genetics of Using Homing Endonuclease Genes in Vector and Pest Management, Genetics, 2008, vol. 179, pp. 2013–2026.

    Article  PubMed  Google Scholar 

  18. Glenner, H., Thomsen, P.F., Hebsgaard, M.B., et al., The Origin of Insects, Science, 2006, vol. 314, pp. 1883–1884.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Mukha.

Additional information

Original Russian Text © A.S. Kagramanova, T.V. Kapelinskaya, A.L. Korolev, D.V. Mukha, 2010, published in Genetika, 2010, Vol. 46, No. 8, pp. 1041–1049.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagramanova, A.S., Kapelinskaya, T.V., Korolev, A.L. et al. Domain organization of the ORF2 C-terminal region of the German cockroach retroposon R1. Russ J Genet 46, 924–931 (2010). https://doi.org/10.1134/S102279541008003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541008003X

Keywords

Navigation