Skip to main content
Log in

RAPD analysis of the intraspecific and interspecific variation and phylogenetic relationships of Aegilops L. species with the U genome

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

RAPD analysis was used to study the genetic variation and phylogenetic relationships of polyploid Aegilops species with the U genome. In total, 115 DNA samples of eight polyploid species containing the U genome and the diploid species Ae. umbellulata (U) were examined. Substantial interspecific polymorphism was observed for the majority of the polyploid species with the U genome (interspecific differences, 0.01–0,2; proportion of polymorphic loci, 56.6–88.2%). Aegilops triuncialis was identified as the only alloploid species with low interspecific polymorphism (interspecific differences, 0–0.01, P = 50%) in the U-genome group. The U-genome Aegilops species proved to be separated from other species of the genus. The phylogenetic relationships were established for the U-genome species. The greatest separation within the U-genome group was observed for the US-genome species Ae. kotschyi and Ae. variabilis. The tetraploid species Ae. triaristata and Ae. columnaris, which had the UX genome, and the hexaploid species Ae. recta (UXN) were found to be related to each other and separate from the UM-genome species. A similarity was observed between the UM-genome species Ae. ovata and Ae. biuncialis, which had the UM genome, and the ancestral diploid U-genome species Ae. umbellulata. The UC-genome species Ae. triuncialis was rather separate and slightly similar to the UX-genome species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eig, A., Monographisch-kritische übersicht der Gattung Aegilops, Feddes Repertorium Specierum novarum regni vegetabilis Beih, 1929, vol. 55, pp. 1–228.

    Google Scholar 

  2. van Slageren, M.W., Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. and Spach) Eig (Poaceae), Wageningen Agriculture University Papers, 1994, vol. 7.

  3. Kihara, H., Considerations on the Evolution and Distribution of Aegilops Species Based on the Analyser-Method, Cytologia, 1954, vol. 19, pp. 336–357.

    Google Scholar 

  4. Chennaveeraiah, M.A., Karyomorphologic and Cytotaxonomic Studies in Aegilops, Acta Horti Gotoburgensis, 1960, vol. 23, no. 4, pp. 85–178.

    Google Scholar 

  5. Badaeva, E.D., Amosova, A.V., Samatadze, T.E., et al., Genome Differentiation in Aegilops: 4. Evolution of the U-Genome Cluster, Plant Syst. Evol., 2004, vol. 246, pp. 45–76.

    Article  CAS  Google Scholar 

  6. Zohary, D. and Feldman, M., Hybridization between Amphidiploids and the Evolution of Polyploids in the Wheat (Aegilops-Triticum) Group, Evolution, 1962, vol. 16, pp. 44–61.

    Article  Google Scholar 

  7. Morris, R. and Sears, E.R., The Cytogenetics of Wheat and Its Relatives, Wheat and Wheat Improvement, Quisenberry, K.S. and Reitz, L.P., Eds., Madison: Am. Soc. Agronomy, 1967, pp. 19–87.

    Google Scholar 

  8. Kimber, G. and Feldman, M., Wild Wheat, an Introduction, in Special Report 353, Columbia: Univ. Missouri, 1987.

    Google Scholar 

  9. Kimber, G. and Tsunewaki, K., Genome Symbols and Plasma Types in the Wheat Group, Ann. Wheat Newsl., 1989, vol. 35, pp. 24–26.

    Google Scholar 

  10. Dvorak, J., Genome Analysis in the Triticum-Aegilops Alliance, in Proceedings of the 9th International Wheat Genetics Symposium, Slinkard, A.E., Ed., Saskatoon, 1998, vol. 1, pp. 8–11.

  11. Kochieva, E.Z., Suprunova, T.P., Identification of Inter- and Intraspecific Polymorphism in Tomato, Russ. J. Genet., 1999, vol. 35, no. 10, pp. 1194–1196.

    CAS  Google Scholar 

  12. Goryunova, S.V., Kochieva, E.Z., Chikida, N.N, and Pukhalskyi, V.A., Phylogenetic Relationships and Intraspecific Variation of D Genome Aegilops L. as Revealed by RAPD Analysis, Russ. J. Genet., 2004, vol. 40, no. 5, pp. 515–523.

    Article  CAS  Google Scholar 

  13. Nei, M. and Li, W.-H., Mathematical Model for Studying Genetic Variation in Terms of Restriction Endonucleases, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, pp. 5269–5273.

    Article  CAS  PubMed  Google Scholar 

  14. Swofford, D.L., PAUP. Phylogenetic Analysis Using Parsinomy (and Other Methods): Version 4, Sunderland: Sinauer Associates, 2000.

    Google Scholar 

  15. Murai, K. and Tsunewaki, K., Molecular Basis of Genetic Diversity among Cytoplasms of Triticum and Aegilops Species: IV. ctDNA Variation in Ae. triuncialis, Heredity, 1986, vol. 57, pp. 335–339.

    Article  CAS  Google Scholar 

  16. Vanichanon, A., Blake, N.K., Sherman, J.D., and Talbert, L.E., Multiple Origins of Allopolyploid Aegilops triuncialis, Theor. Appl. Genet., 2003, vol. 106, pp. 804–810.

    CAS  PubMed  Google Scholar 

  17. Waines, J.G. and Barnhart, D., Biosystematic Research in Aegilops and Triticum, Hereditas, 1992, vol. 116, pp. 207–212.

    Article  Google Scholar 

  18. Dvorak, J., Luo, M.-C., and Yang, Z.-L., Restriction Fragment Length Polymorphism and Divergence in the Genomic Regions of High and Low Recombination in Self-Fertilizing and Cross-Fertilizing Aegilops Species, Genetics, 1998, vol. 148, pp. 423–434.

    CAS  PubMed  Google Scholar 

  19. Charlesworth, B., The Effect of Background Selection against Deleterious Mutations on Weakly Selected, Linked Variants, Genet. Res., 1994, vol. 63, pp. 213–227.

    Article  CAS  PubMed  Google Scholar 

  20. Charlesworth, B., Background Selection and the Patterns of Genetic Diversity in Drosophila melanogaster, Genet. Res., 1996, vol. 68, pp. 131–149.

    Article  CAS  PubMed  Google Scholar 

  21. Nordborg, M., Charlesworth, B., and Charlesworth, D., The Effect of Recombination on Background Selection, Genet. Res., 1996, vol. 67, pp. 159–174.

    Article  CAS  PubMed  Google Scholar 

  22. Chee, P.W., Lavin, M., and Talbert, L.E., Molecular Analysis of Evolutionary Patterns in U Genome Wild Wheats, Genome, 1995, vol. 38, pp. 290–297.

    Article  CAS  PubMed  Google Scholar 

  23. Kadosumi, S., Kawahara, T., and Sasanuma, T., Multiple Origins of U Genome in Two UM Genome Tetraploid Aegilops Species, Ae. columnaris and Ae. triaristata, Revealed Based on the Polymorphism of a Genome-Specific PCR Fragment, Genes Genet. Syst., 2005, vol. 80, pp. 105–111.

    Article  CAS  PubMed  Google Scholar 

  24. Caldwell, K.S., Dvorak, J., Lagudah, E.S., et al., Sequence Polymorphism in Polyploidy Wheat and Their D-Genome Diploid Ancestor, Genetics, 2004, vol. 167, pp. 941–947.

    Article  CAS  PubMed  Google Scholar 

  25. Madlung, A., Tyagi, A., Watson, B., et al., Genomic Changes in Synthetic Arabidopsis Polyploids, Plant J., 2005, vol. 41, no. 2, pp. 221–230.

    Google Scholar 

  26. Kashkush, K., Feldman, M., and Levy, A.A., Transcriptional Activation of Retrotransposons Alters the Expression of Adjacent Genes in Wheat, Nat. Genet., 2003, vol. 33, pp. 102–106.

    Article  CAS  PubMed  Google Scholar 

  27. Witcombe, J.R., A Guide to the Species of Aegilops L.: Their Taxonomy, Morphology, and Distribution, Rome: International Board for Plant Genetic Resources (IPGRI), 1983.

    Google Scholar 

  28. Hammer, K., Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L., Kulturpflanze, 1980, vol. 28, pp. 33–180.

    Article  Google Scholar 

  29. Kihara, H., Genomanalyse bei Triticum und Aegilops: IX. Systematische Aufbau der Gattung Aegilops auf genomoanalytischer Grundlage, Cytologia, 1949, vol. 14, pp. 135–144.

    Google Scholar 

  30. Resta, P., Zhang, H.B., Dubkovsky, J., and Dvorak, J., The Origin of the Genomes of Triticum biunciale, T. ovatum, T. neglectum, T. columnare, and T. rectum Based on Variation in Repeated Nucleotide Sequences, Am. J. Bot., 1996, vol. 83, pp. 1556–1565.

    Article  CAS  Google Scholar 

  31. Ozkan, H., Levy, A.A., and Feldman, M., Allopolyploidy-Induced Rapid Genome Evolution in the Wheat (Aegilops-Triticum) Group, Plant Cell, 2001, vol. 13, pp. 1735–1747.

    Article  CAS  PubMed  Google Scholar 

  32. Shaked, H., Kashkush, K., Ozkan, H., et al., Sequence Elimination and Cytosine Methylation Are Rapid and Reproducible Responses of the Genome to Wide Hybridization and Allopolyploidy in Wheat, Plant Cell, 2001, vol. 13, pp. 1749–1759.

    Article  CAS  PubMed  Google Scholar 

  33. Salina, E.A., Numerova, O.M., Ozkan, H., and Feldman, M., Alterations in Subtelomeric Tandem Repeats during Early Stages of Allopolyploidy in Wheat, Genome, 2004, vol. 47, pp. 860–867.

    Article  CAS  PubMed  Google Scholar 

  34. Belyayev, A., Raskina, O., Korol, A., and Nevo, E., Coevolution of A and B Genomes in Allotetraploid Triticum dicoccoides, Genome, 2000, vol. 43, pp. 1021–1026.

    Article  CAS  PubMed  Google Scholar 

  35. Mizumoto, K., Takumi, S., Ogihara, Y., and Nakamura, C., Origin, Dispersal and Genomic Structure of a Low-Copy-Number Hypervariable RFLP Clone in Triticum and Aegilops Species, Genes Genet. Syst., 2003, vol. 78, pp. 291–300.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Goryunova.

Additional information

Original Russian Text © S.V. Goryunova, N.N. Chikida, E.Z. Kochieva, 2010, published in Genetika, 2010, Vol. 46, No. 7, pp. 945–959.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goryunova, S.V., Chikida, N.N. & Kochieva, E.Z. RAPD analysis of the intraspecific and interspecific variation and phylogenetic relationships of Aegilops L. species with the U genome. Russ J Genet 46, 841–854 (2010). https://doi.org/10.1134/S1022795410070094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795410070094

Keywords

Navigation