Skip to main content
Log in

Localization of denitrification genes in plasmid DNA of bacteria Azospirillum brasilense

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In an 85-MDa plasmid (p85) of the plant-associated bacteria Azospirillum brasilense Sp245 the genes encoding copper-containing nitrite reductase (nirK); heterodimeric NO-reductase (norCB); NorQ and NorD proteins affecting synthesis and (or) activation of NirK and (or) NO-reductase (norQD); catalytic subunit I of cytochrome c oxidase (ccoN); presumable NO sensor carrying two hemerythrin domains (orf181); and an enzyme, required for synthesis of presumable NO antagonist, homocysteine (metC) were identified. In the same region of p85, orf293 encoding transcriptional regulator of LysR type, orf208 whose protein product carries a formylmethanofuran dehydrogenase subunit E domain, and an orf164 encoding conserved secretory protein with unknown function were also found. Localization of a set of denitrification genes in the plasmid DNA of A. brasilense Sp245 adjacent to IS elements ISAzba1 and ISAzba2 indicates potential mobility of these genes and high probability of their horizontal transfer among populations of rhizospheric bacteria. A region homologous to p85 nirKorf208-orf181 genes was detected in an 115-MDa plasmid of A. brasilense Sp7 type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zumft, W.G., Cell Biology and Molecular Basis of Denitrification, Microbiol. Mol. Biol. Rev., 1997, vol. 61, no. 4, pp. 533–616.

    CAS  PubMed  Google Scholar 

  2. Steenhoudt, O., Keijers, V., Okon, Y., and Vanderleyden, J., Identification and Characterization of a Periplasmic Nitrite Reductase in Azospirillum brasilense Sp245, Arch. Microbiol., 2001, vol. 175, no. 5, pp. 344–352.

    Article  CAS  PubMed  Google Scholar 

  3. Kloos, K., Mergel, A., Rösch, C., and Bothe, H., Denitrification within the Genus Azospirillum and Other Associative Bacteria, Austr. J. Plant Physiol., 2001, vol. 28, no. 9, pp. 991–998.

    Google Scholar 

  4. Braker, G. and Tiedje, J.M., Nitric Oxide Reductase (norB) Genes from Pure Cultures and Environmental Samples, Appl. Environ. Microbiol., 2003, vol. 69, no. 6, pp. 3476–3483.

    Article  CAS  PubMed  Google Scholar 

  5. Rich, J.J., Heichen, R.S., Bottomley, P.J., et al., Community Composition and Functioning of Denitrifying Bacteria from Adjacent Meadow and Forest Soils, Appl. Environ. Microbiol., 2003, vol. 69, no. 10, pp. 5974–5982.

    Article  CAS  PubMed  Google Scholar 

  6. Katsy, E.I., The Properties and Functions of Plasmids from the Plant-Associated Bacteria of the Genus Azospirillum, Usp. Sovrem. Biol., 2002, vol. 122, no. 4, pp. 353–364.

    CAS  Google Scholar 

  7. Katsy, E.I., Prilipov, A.G., Petrova, L.P., and Borisov, I.V., Localization of Genes for Dissimilatory Copper-Containing Nitrite Reductase, NO-Reductase, and Cytochrome Oxidase in Plasmid DNA of Soil Bacteria Azospirillum brasilense, Mikroorganizmy i biosfera (Microorganisms and Biosphere), Proc. Int. Sci. Conf., Gal’chenko, V.F., Ed., Moscow: Max Press, 2007, pp. 56–58.

    Google Scholar 

  8. Baldani, V.L.D., Baldani, J.I., and Döbereiner, J., Effects of Azospirillum Inoculation on Root Infection and Nitrogen Incorporation in Wheat, Can. J. Microbiol., 1983, vol. 29, no. 8, pp. 924–929.

    Article  Google Scholar 

  9. Tarrand, J.X., Krieg, N.E., and Döbereiner, J., A Taxonomic Study of the Spirillum lipoferum Group, with Descriptions of a New Genus, Azospirillum gen. nov. and Two Species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov., Can. J. Microbiol., 1978, vol. 24, no. 8, pp. 967–980.

    Article  CAS  PubMed  Google Scholar 

  10. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989. 2nd ed.

    Google Scholar 

  11. Katsy, E.I., Borisov, I.V., and Shelud’ko, A.V., Effect of the Integration of Vector pJFF350 into Plasmid 85-MDa of Azospirillum brasilense Sp245 on Bacterial Flagellation and Motility, Russ. J. Genet., 2001, vol. 37, no. 2, pp. 129–134.

    Article  Google Scholar 

  12. Katsy, E.I. and Prilipov, A.G., Mobile Elements of an Azospirillum brasilense Sp245 85-MDa Plasmid Involved in Replicon Fusions, Plasmid, 2009, vol. 62, no. 1, pp. 22–29.

    Article  CAS  PubMed  Google Scholar 

  13. Pothier, J.F., Prigent-Combaret, C., Haurat, J., et al., Duplication of Plasmid-Borne Nitrite Reductase Gene nirK in the Wheat-Associated Plant Growth-Promoting Rhizobacterium Azospirillum brasilense Sp245, Mol. Plant-Microbe Interact., 2008, vol. 21, no. 6, pp. 831–842.

    Article  CAS  PubMed  Google Scholar 

  14. Strube, K., de Vries, S., and Cramm, R., Formation of a Dinitrosyl Iron Complex by NorA, a Nitric Oxide-Binding Di-Iron Protein from Ralstonia eutropha H16, J. Biol. Chem., 2007, vol. 282, no. 28, pp. 20292–20300.

    Article  CAS  PubMed  Google Scholar 

  15. Isaza, C.E., Silaghi-Dumitrescu, R., Iyer, R.B., et al., Structural Basis for O2 Sensing by the Hemerythrin-Like Domain of a Bacterial Chemotaxis Protein: Substrate Tunnel and Fluxional N Terminus, Biochemistry, 2006, vol. 45, no. 30, pp. 9023–9031.

    Article  CAS  PubMed  Google Scholar 

  16. Ko, M. and Park, C., H-NS-Dependent Regulation of Flagellar Synthesis Is Mediated by a LysR Family Protein, J. Bacteriol., 2000, vol. 182, no. 16, pp. 4670–4672.

    Article  CAS  PubMed  Google Scholar 

  17. Marchal, K., Sun, J., Keijers, V., et al., A Cytochrome cbb3 (Cytochrome c) Terminal Oxidase in Azospirillum brasilense Sp7 Supports Microaerobic Growth, J. Bacteriol., 1998, vol. 180, no. 21, pp. 5689–5696.

    CAS  PubMed  Google Scholar 

  18. Laratta, W.P., Choi, P.S., Tosques, I.E., and Shapleigh, J.P., Involvement of the PrrB/PrrA Two-Component System in Nitrite Respiration in Rhodobacter sphaeroides 2.4.3: Evidence for Transcriptional Regulation, J. Bacteriol., 2002, vol. 184, no. 13, pp. 3521–3529.

    Article  CAS  PubMed  Google Scholar 

  19. Laguri, C., Phillips-Jones, M.K., and Williamson, M.P., Solution Structure and DNA Binding of the Effector Domain from the Global Regulator PrrA (RegA) from Rhodobacter sphaeroides: Insights into DNA Binding Specificity, Nucl. Acids Res., 2003, vol. 31, no. 23, pp. 6778–6787.

    Article  CAS  PubMed  Google Scholar 

  20. Swem, D.L. and Bauer, C.E., Coordination of Ubiquinol Oxidase and Cytochrome cbb3 Oxidase Expression by Multiple Regulators in Rhodobacter capsulatus, J. Bacteriol., 2002, vol. 184, no. 10, pp. 2815–2820.

    Article  CAS  PubMed  Google Scholar 

  21. Membrillo-Hernández, J., Coopamah, M.L., Channa, A., et al., A Novel Mechanism for Upregulation of the Escherichia coli K-12 hmp (Flavohaemoglobin) Gene by the “NO Releaser”, S-Nitrosoglutathione: Nitrosation of Homocysteine and Modulation of MetR Binding to the glyA-hmp Intergenic Region, Mol. Microbiol., 1998, vol. 29, no. 4, pp. 1101–1112.

    Article  PubMed  Google Scholar 

  22. Katsy, E.I., Borisov, I.V., Petrova, L.P., and Matora, L.Yu., The Use of Fragments of the 85- and 120-MDa Plasmids of Azospirillum brasilense Sp245 to Study the Plasmid Rearrangement in This Bacterium and to Search for Homologous Sequences in Plasmids of Azospirillum brasilense Sp7, Russ. J. Genet., 2002, vol. 38, no. 2, pp. 124–131.

    Article  CAS  Google Scholar 

  23. Steenhoudt, O., Ping, Z., Vande Broek, A., and Vanderleyden, J., A Spontaneous Chlorate-Resistant Mutant of Azospirillum brasilense Sp245 Displays Defects in Nitrate Reduction and Plant Root Colonization, Biol. Fertil. Soils., 2001, vol. 33, no. 4, pp. 317–322.

    Article  CAS  Google Scholar 

  24. Molina-Favero, C., Creus, C.M., Simontacchi, M., et al., Aerobic Nitric Oxide Production by Azospirillum brasilense Sp245 and Its Influence on Root Architecture in Tomato, Mol. Plant-Microbe Interact., 2008, vol. 21, no. 7, pp. 1001–1009.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Katsy.

Additional information

Original Russian Text © L.P. Petrova, O.E. Varshalomidze, A.V. Shelud’ko, E.I. Katsy, 2010, published in Genetika, 2010, Vol. 46, No. 7, pp. 904–910.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrova, L.P., Varshalomidze, O.E., Shelud’ko, A.V. et al. Localization of denitrification genes in plasmid DNA of bacteria Azospirillum brasilense . Russ J Genet 46, 801–807 (2010). https://doi.org/10.1134/S1022795410070045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795410070045

Keywords

Navigation