Advertisement

Russian Journal of Genetics

, Volume 46, Issue 7, pp 794–800 | Cite as

Diversity of genes encoding nonribosomal peptide synthetases in the Streptomyces sioyaensis genome

  • M. L. Myronovskyy
  • B. E. Ostash
  • V. A. FedorenkoEmail author
Genetics of Microorganisms
  • 66 Downloads

Abstract

Streptomyces sioyaensis Lv81 produces siomycin, a thiopeptide antibiotic synthesized on ribosomes. Nothing is known about the ability of this strain to produce nonribosomal peptides, a well represented group of natural actinomycete compounds. Using degenerate primers, we cloned a number of DNA fragments encoding putative adenylation domains (A domains) of nonribisomal peptide synthetases involved in biosynthesis of unknown compounds. Sequencing of amplicons revealed nine different A domains, which were analyzed in more detail. Nonribosomal codes of these domains were determined, but in most cases their substrate specificity failed to be unambiguously predicted. This means that many of these domains can recognize novel amino acids and be used to improve and expand the bioinformatic toolbox applied to predict substrate specificity of A domains. Multiple sequence alingments showed that the cloned A domains are probably involved in different biosynthetic pathways. Five A domains were used in gene inactivation experiments. Inactivation of one of them (in strain 736) resulted in a decrease of the total antibiotic activity as compared to the initial strain. Other A-domain mutants were similar to the initial strain in morphology and siomycin production. The causes of reduced antibiotic activity of strain 736 are discussed.

Keywords

Daptomycin Thiostrepton Nonribosomal Peptide NRPS Gene Nonribosomal Peptide Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bentley, S.D., Chater, K.F., Cerdeño-Tárraga, A.M., et al., Complete Genome Sequence of the Model Actinomycete Streptomyces coelicolor A3(2), Nature, 2002, vol. 417, pp. 141–147.CrossRefPubMedGoogle Scholar
  2. 2.
    Omura, S., Ikeda, H., Ishikawa, J., et al., Genome Sequence of an Industrial Microorganism Streptomyces avermitilis: Deducing the Ability of Producing Secondary Metabolites, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 12215–12220.CrossRefPubMedGoogle Scholar
  3. 3.
    Ohnishi, Y., Ishikawa, J., Hara, H., et al., Genome Sequence of the Streptomycin-Producing Microorganism Streptomyces griseus IFO 13350, J. Bacteriol., 2008, vol. 190, pp. 4050–4060.CrossRefPubMedGoogle Scholar
  4. 4.
    Hahn, M. and Stachelhaus, T., Selective Interaction between Nonribosomal Peptide Synthetases Is Facilitated by Short Communication-Mediating Domains, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 15585–15590.CrossRefPubMedGoogle Scholar
  5. 5.
    Finking, R. and Marahiel, M.A., Biosynthesis of Nonribosomal Peptides, Annu. Rev. Microbiol., 2004, vol. 58, pp. 453–488.CrossRefPubMedGoogle Scholar
  6. 6.
    Sieber, S.A. and Marahiel, M.A., Molecular Mechanisms Underlying Nonribosomal Peptide Synthesis: Approaches to New Antibiotics, Chem. Rev., 2005, vol. 105, pp. 715–738.CrossRefPubMedGoogle Scholar
  7. 7.
    Grünewald, J. and Marahiel, M.A., Chemoenzymatic and Template-Directed Synthesis of Bioactive Macro-cyclic Peptides, Microbiol. Mol. Biol. Rev., 2006, vol. 70, pp. 121–146.CrossRefPubMedGoogle Scholar
  8. 8.
    von Döhren, H., Dieckmann, R., and Pavela-Vrancic, M., The Nonribosomal Code, Chem. Biol., 1999, vol. 6, pp. 273–279.CrossRefGoogle Scholar
  9. 9.
    Stachelhaus, T., Mootz, H.D., and Marahiel, M.A., The Specificity-Conferring Code of Adenylation Domains in Nonribosomal Peptide Synthetases, Chem. Biol., 1999, vol. 6, pp. 493–505.CrossRefPubMedGoogle Scholar
  10. 10.
    Nishimura, H., Okamoto, S., Mayama, M., et al., Siomycin, a New Thiostrepton-Like Antibiotic, J. Antibiot., 1961, pp. 255–263.Google Scholar
  11. 11.
    Liao, R., Duan, L., Lei, C., et al., Thiopeptide Biosynthesis Featuring Ribosomally Synthesized Precursor Peptides and Conserved Posttranslational Modifications, Chem. Biol., 2009, vol. 16, pp. 141–147.CrossRefPubMedGoogle Scholar
  12. 12.
    Kieser, T., Bibb, M.J., Buttner, M.J., et al., Practical Streptomyces Genetics, Norwich: The John Innes Foundation, 2000.Google Scholar
  13. 13.
    Luzhetskii, A.N., Ostash, B.E., and Fedorenko, V.A., Intergeneric Conjugation Escherichia coli-Streptomyces globisporus 1912 Using Integrative Plasmid pSET152 and Its Derivatives, Russ. J. Genet., 2001, vol. 37, no. 10, pp. 1123–1129.CrossRefGoogle Scholar
  14. 14.
    Holmes, D.J., Caso, J.L., and Thompson, C.J., Autogenous Transcriptional Activation of a Thiostrepton-Induced Gene in Streptomyces lividans, EMBO J., 1993, vol. 12, pp. 3183–3191.PubMedGoogle Scholar
  15. 15.
    Sambrook, J. and Russell, D., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab. Press, 2001, 3d ed.Google Scholar
  16. 16.
    Ayuso-Sacido, A. and Genilloud, O., New PCR Primers for the Screening of NRPS and PKS-I Systems in Actinomycetes: Detection and Distribution of These Biosynthetic Gene Sequences in Major Taxonomic Groups, Microb. Ecol., 2005, vol. 49, pp. 10–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Lombá, F., Velasco, A., Castro, A., et al., Deciphering the Biosynthesis Pathway of the Antitumor Thiocoraline from a Marine Actinomycete and Its Expression in Two Streptomyces Species, Chembiochem, 2006, vol. 7, pp. 366–376.CrossRefGoogle Scholar
  18. 18.
    Ikeda, H., Ishikawa, J., Hanamoto, A., et al., Complete Genome Sequence and Comparative Analysis of the Industrial Microorganism Streptomyces avermitilis, Nat. Biotechnol., 2003, vol. 21, pp. 526–531.CrossRefPubMedGoogle Scholar
  19. 19.
    Oliynyk, M., Samborskyy, M., Lester, J.B., et al., Complete Genome Sequence of the Erythromycin-Producing Bacterium Saccharopolyspora erythraea NRRL23338, Nat. Biotechnol., 2007, vol. 25, pp. 447–453.CrossRefPubMedGoogle Scholar
  20. 20.
    Rausch, C., Weber, T., Kohlbacher, O., et al., Specificity Prediction of Adenylation Domains in Nonribosomal Peptide Synthetases (NRPS) Using Transductive Support Vector Machines (TSVMs), Nucl. Acids Res., 2005, vol. 33, pp. 5799–5808.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • M. L. Myronovskyy
    • 1
  • B. E. Ostash
    • 1
  • V. A. Fedorenko
    • 1
    Email author
  1. 1.Department of Genetics and BiotechnologyFranko National University of LvivLvivUkraine

Personalised recommendations