Skip to main content
Log in

Pseudolysogeny of Pseudomonas aeruginosa bacteria infected with φKZ-like bacteriophages

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In this work, a final piece of evidence proving that bacteria Pseudomonas aeruginosa are capable of transition to the pseudolysogenic state after infection with φKZ-like phages has been produced. It was shown that the decisive factor in this process is multiple infection of bacteria with bacteriophages belonging to this genus. In the course of this work, stable clinical isolates of bacteria liberating novel bacteriophages of this genus (Che2/2 and Che21/5) were detected and attributed to species φKZ and EL, respectively, according to their phenotypic characters and the results of DNA analysis. For three bacteriophages belonging to species EL (EL, RU, and Che21/5), mutants with disorders in the capability for pseudolysogenization were isolated. One of the mutants of phage EL possesses properties of virulent mutants of typical temperate phages (vir mutant). This mutant fails to form pseudolysogens and, moreover, provides the effect of dominance upon coinfection of bacteria with the wild-type phage EL, but however is unable to exhibit this effect upon joint infection of bacteria with wild-type phages of species φKZ and Lin68. It is assumed that the effect of pseudolysogeny may be connected with functioning of φKZ and EL genes that control the products similar to repressors of other phages. Because earlier wild-type φKZ-like phages were shown to be present in commercial phage-therapeutic preparations (which represents certain problems), it is expedient to use virulent mutants of phages belonging to this genus rather than phages of the wild type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krylov, V.N., Dela Cruz, D.M., Hertveldt, K., and Ackermann, H.-W., “φKZ-Like Viruses”, a Proposed New Genus of Myovirus Bacteriophages, Arch. Virol., 2007, vol. 152, no. 10, pp. 1955–1959.

    Article  CAS  PubMed  Google Scholar 

  2. Doermann, A.H., Lysis and Lysis Inhibition with Escherichia coli Bacteriophage, J. Bacteriol., 1948, vol. 55, no. 2, pp. 257–276.

    Google Scholar 

  3. Krylov, V.N. and Zhazykov, I.Zh., Pseudomonas aeruginosa Bacteriophage φKZ as a Probable Model for Analysis of Genetic Control of Morphogenesis, Genetika (Moscow), 1978, vol. 14, no. 4, pp. 678–685.

    CAS  Google Scholar 

  4. Burkal’tseva, M.V., Krylov, V.N., Pleteneva, E.A., et al., Phenogenetic Characterization of a Group of Giant φKZ-Like Bacteriophages of Pseudomonas aeruginosa, Russ. J. Genet., 2002, vol. 38, no. 11, pp. 1242–1250.

    Article  Google Scholar 

  5. Krylov, V.N., Burkal’tseva, M.V., Sykilinda, N.N., et al., Comparison of Genomes of New Gigantic Pseudomonas aeruginosa Phages from Native Populations from Different Regions, Russ. J. Genet., 2004, vol. 40, no. 4, pp. 363–368.

    Article  CAS  Google Scholar 

  6. Mesyanzhinov, V.V., Robben, J., Grymonprez, B., et al., The Genome of Bacteriophage φKZ of Pseudomonas aeruginosa, J. Mol. Biol., 2002, vol. 317, pp. 1–19.

    Article  CAS  PubMed  Google Scholar 

  7. Hertveldt, K., Lavigne, R., Pleteneva, E., et al., Genome Comparison of Pseudomonas aeruginosa Large Phages, J. Mol. Biol., 2005, vol. 2, no. 354, no. 3, pp. 536–545.

    Article  Google Scholar 

  8. Shaburova, O.V., Hertveldt, K., de la Cruz, D.M.A., et al., Comparison of New Giant Bacteriophages OBP and LU11 of Soil Pseudomonads with Bacteriophages of the φKZ-Supergroup of Pseudomonas aeruginosa, Russ. J. Genet., 2006, vol. 42, no. 8, pp. 877–885.

    Article  CAS  Google Scholar 

  9. Thomas, J.A., Rolando, M.R., Carroll, C.A., et al., Characterization of Pseudomonas chlororaphis Myovirus 201varphi2-1 via Genomic Sequencing, Mass Spectrometry, and Electron Microscopy, Virology, 2008, vol. 5, no. 376, no. 2, pp. 330–338.

    Article  Google Scholar 

  10. Sharibzhanova, T.O., Akhverdyan, V.Z., and Krylov, V.N., A Comparative Study of DNA Homology and Morphology of Pseudomonas aeruginosa Bacteriophages to Reveal Phylogenetic Relationships and for an Express Classification, Russ. J. Genet., 1992, vol. 28, no. 3, pp. 24–32.

    Google Scholar 

  11. Khemayan, K., Pasharawipas, T., Puiprom, O., et al., Unstable Lysogeny and Pseudolysogeny in Vibrio harveyi Siphovirus-Like Phage 1, Appl. Environ. Microbiol., 2006, vol. 72, no. 2, pp. 1355–1363.

    Article  CAS  PubMed  Google Scholar 

  12. Sakaguchi, Y., Hayashi, T., Kurokawa, K., et al., The Genome Sequence of Clostridium botulinum Type C Neurotoxin-Converting Phage and the Molecular Mechanisms of Unstable Lysogeny, Proc. Natl. Acad. Sci. USA, 2005, vol. 29, no. 102, pp. 17472–17477.

    Article  Google Scholar 

  13. Ripp, S. and Miller, R.V., Dynamics of the Pseudolysogenic Response in Slowly Growing Cells of Pseudomonas aeruginosa, Microbiology, 1998, vol. 144, no. 8, pp. 2225–2232.

    Article  CAS  PubMed  Google Scholar 

  14. Los, M., Wegrzyn, G., and Neubauer, P., A Role for Bacteriophage T4 rI Gene Function in the Control of Phage Development during Pseudolysogeny and in Slowly Growing Host Cells, Res. Microbiol., 2003, vol. 154, no. 8, pp. 547–552.

    Article  CAS  PubMed  Google Scholar 

  15. Pleteneva, E.A., Shaburova, O.V., and Krylov, V.N., A Formal Scheme of Adsorptional Receptors in Pseudomonas aeruginosa and Possibilities for Its Practical Implementation, Russ. J. Genet., 2009, vol. 45, no. 1, pp. 35–40.

    Article  CAS  Google Scholar 

  16. Miller, J.H., Experiments in Molecular Genetics, New York: Cold Spring Harbor Lab., 1972.

    Google Scholar 

  17. Adams, M.H., Bacteriophages, New York: Interscience, 1959, pp. 29–30 and 450–451.

    Google Scholar 

  18. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  19. Warren, R.J. and Bose, S.K., Bacteriophage-Induced Inhibition of Host Functions: I. Degradation of Escherichia coli Deoxyribonucleic Acid after T4 Infection, J. Virol., 1968, vol. 2, no. 4, pp. 327–334.

    CAS  PubMed  Google Scholar 

  20. Mathews, C.K. and Kessin, R.H., Control of Bacteriophage-Induced Enzyme Synthesis in Cells Infected with a Temperature-Sensitive Mutant, J. Virol., 1967, vol. 1, no. 1, pp. 92–96.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Krylov.

Additional information

Original Russian Text © E.A. Pleteneva, S.V. Krylov, O.V. Shaburova, M.V. Bourkal’tseva, K.A. Miroshnikov, V.N. Krylov, 2010, published in Genetika, 2010, Vol. 46, No. 1, pp. 26–32.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pleteneva, E.A., Krylov, S.V., Shaburova, O.V. et al. Pseudolysogeny of Pseudomonas aeruginosa bacteria infected with φKZ-like bacteriophages. Russ J Genet 46, 20–25 (2010). https://doi.org/10.1134/S1022795410010047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795410010047

Keywords

Navigation