Russian Journal of Genetics

, 45:1329 | Cite as

The unique genome of two-chromosome grasses Zingeria and Colpodium, its origin, and evolution

  • E. S. Kim
  • N. L. Bolsheva
  • T. E. Samatadze
  • N. N. Nosov
  • I. V. Nosova
  • A. V. Zelenin
  • E. O. Punina
  • O. V. Muravenko
  • A. V. Rodionov
Experimental Articles


Chromosome C-banding and two-color fluorescent in situ hybridization (FISH) were used to compare the chromosomes, to identify the chromosomal localization of the 45S and 5S rRNA genes, and to analyze the sequences of internal transcribed spacers 1 and 2 (ITS1 and ITS2) of the 45S rRNA genes in the genomes of grasses Zingeria biebersteiniana (2n = 4), Z. pisidica, Z. trichopoda (2n = 8), Colpodium versicolor (2n = 4), and Catabrosella variegata (syn. Colpodium variegatum) (2 n = 10). Differences in C-banding pattern were observed for two Z. biebersteiniana accessions from different localities. Similar C-banding patterns of chromosomes 1 and 2 were demonstrated for the Z. pisidica and Z. biebersteininana karyotypes. Chromosome C banding and localization of the 45S and 5S rRNA genes on the chromosomes of the two Zingeria species confirmed the assumption that Z. pisidica is an allotetraploid with one of the subgenomes similar to the Z. biebersteiniana genome. ITS comparisons showed that the unique two-chromosome grasses (x = 2)—Z. biebersteiniana (2n = 4), Z. trichopoda (2n = 8), Z. pisidica (2n = 8), and C. versicolor (2n = 4), which were earlier assigned to different tribes of subtribes of the family Poaceae—represent two closely related genera, the genetic distance (p-distance) between their ITSs being only 1.2–4.4%. The Zingeria species and C. versicolor formed a common clade with Catabrosella araratica (2n = 42, x = 7) on a molecular phylogenetic tree. Thus, the karyotypes of Zingeria and Colpodium, which have the lowest known basic chromosome number (x = 2), proved to be monophyletic, rather than originating from different phylogenetic lineages.


Minor Site Basic Chromosome Number Volgograd Oblast Matricaria Chamomilla Reduce Chromosome Number 


  1. 1.
    Levitskii, G.A., Cytological Bases of Evolution, Priroda, 1939, no. 5, pp. 33–44.Google Scholar
  2. 2.
    Avdulov, N.P., Karyo-Systematic Study of the Family Gramineae, Tr. Prikladnoi Botanike Genet. Selektsii, 1931, no. 44, pp. 1–352.Google Scholar
  3. 3.
    Paterson, A.H., Bowers, J.E., and Chapman, B.A., Ancient Polyploidization Predating Divergence of the Cereals, and Its Consequences for Comparative Genomics, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 9903–9908.CrossRefPubMedGoogle Scholar
  4. 4.
    Paterson, A.H., Bowers, J.E., Feltus, F.A., et al., Comparative Genomics of Grasses Promises a Bountiful Harvest, Plant Physiol., 2009, vol. 149, pp. 125–131.CrossRefPubMedGoogle Scholar
  5. 5.
    Tang, H., Bowers, J.E., Wang, X., et al., Synteny and Colinearity in Plant Genomes, Science, 2008, vol. 320, pp. 486–488.CrossRefPubMedGoogle Scholar
  6. 6.
    Tsvelev, N.N. and Zhukova, P.G., On the Minimal Main Chromosome Cycle in Poaceae, Bot. Zh., 1974, vol. 59, pp. 265–269.Google Scholar
  7. 7.
    Sokolovskaya, A.P. and Probatova, N.S., On the Minimal Main Chromosome Cycle (2n = 4) in Colpodium versicolor (Stev.) Woronow (Poaseae), Bot. Zh., 1977, vol. 52, no. 2, pp. 241–245.Google Scholar
  8. 8.
    Semenov, V.I. and Semenova, E.V., Differential Staining of Chromosomes in Zingeria biebersteiniana (Claus) P. Smirn. during Mitosis and Meiosis, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Biol., 1975, vol. 3, no. 15, pp. 80–84.Google Scholar
  9. 9.
    Sorokin, S.N. and Punina, E.O., Karyo-Systematics of Zingeria biebersteiniana (Poaceae), Bot. Zh., 1992, vol. 77, no. 7, pp. 75–79.Google Scholar
  10. 10.
    Cremonini, R., Castiglione, M.R., Grif, V.G., et al., Chromosome Banding and DNA Methylation Patterns, Chromatin Organization and Nuclear DNA Content in Zingeria biebersteiniana, Biologia Plantarum, 2003, vol. 4, pp. 543–550.CrossRefGoogle Scholar
  11. 11.
    Bennett, M.D., Smith, J.B., and Seal, A.G., The Karyotype of the Grass Zingeria biebersteiniana (2n = 4) by Light and Electron Microscopy, Can. J. Genet. Cytol., 1986, vol. 28, pp. 554–562.Google Scholar
  12. 12.
    Bennett, S.T., Leitch, I.J., and Bennett, M.D., Chromosome Identification and Mapping in the Grass Zingeria biebersteiniana (2n = 4) Using Fluorochromes, Chromosome Res., 1995, vol. 3, pp. 101–108.CrossRefPubMedGoogle Scholar
  13. 13.
    Kotseruba, V., Gernand, D., Meister, A., and Houben, A., Uniparental Loss of Ribosomal DNA in the Allotetraploid Grass Zingeria trichopoda (2n = 8), Genome, 2003, vol. 46, pp. 156–163.CrossRefPubMedGoogle Scholar
  14. 14.
    Kotseruba, V., Pistrick, K., Gernand, D., et al., Characterization of the Low-Chromosome Number Grass Colpodium versicolor (Stev.) Schmalh. (2n = 4) by Molecular Cytogenetics, Caryologia, 2005, vol. 58, pp. 241–245.Google Scholar
  15. 15.
    Rodionov, A.V., Punina, E.O., Dobroradova, M.A., et al., Chromosome Numbers of Some Grasses (Poaceae): Aveneae, Poeae, Phalarideae, Phleeae, Bromeae, Triticeae, Bot. Zh., 2006, vol. 91, no. 4, pp. 615–627.Google Scholar
  16. 16.
    Tsvelev, N.N. and Bolkhovskikh, Z.V., Genus Zingeria P. Smirn. and Related Genera of Gramineae (Karyo-Systematic Study), Bot. Zh., 1965, vol. 50, no. 9, pp. 1317–1320.Google Scholar
  17. 17.
    Tsvelev, N.N., Zlaki SSSR (Grasses of the Soviet Union), Leningrad: Nauka, 1976.Google Scholar
  18. 18.
    Clayton, W.D. and Renvoize, S.A., Genera Graminum, Grasses of the World, London: HMSO, 1986.Google Scholar
  19. 19.
    Saunders, V.A. and Houben, A., The Pericentromeric Heterochromatin of the Grass Zingeria biebersteiniana (2n = 4) Is Composed of Zbcen1-Type Tandem Repeats That Are Intermingled with Accumulated Dispersedly Organized Sequences, Genome, 2001, vol. 44, no. 6, pp. 955–961.CrossRefPubMedGoogle Scholar
  20. 20.
    Muravenko, O.V., Samatadze, T.E., and Zelenin, A.V., Computer and Visual Analysis of G-Like Banding Patterns of Matricaria chamomilla Chromosomes, Biol. Membrany, 1998, vol. 15, no. 6, pp. 670–678.Google Scholar
  21. 21.
    Samatadze, T.E., Muravenko, O.V., Popov, K.V., and Zelenin, A.V., Genome Comparison of the Matricaria chamomilla L. Varieties by the Chromosome C- and OR-Banding Patterns, Caryologia, 2001, vol. 54, pp. 299–306.Google Scholar
  22. 22.
    Muravenko, O.V., Samatadze, T.E., Popov, K.V., et al., Comparative Genome Analysis of Two Flax Species by C-Banding Patterns, Russ. J. Genet., 2001, vol. 37, no. 3, pp. 253–256.CrossRefGoogle Scholar
  23. 23.
    Semenova, O.Yu., Samatadze, T.E., Zelenin, A.V., and Muravenko, O.V., The Comparative Genome Study of the Flax Species of Sections Adenolinum and Stellerolinum by Means of Fluorescent Hybridization in situ (FISH), Biol. Membrany, 2006, vol. 23, no. 6, pp. 453–460.CrossRefGoogle Scholar
  24. 24.
    Gerlach, W.L. and Bedbrook, J.R., Cloning and Characterisation of Ribosomal RNA Genes from Wheat and Barley, Nucleic Acids Res., 1979, vol. 7, pp. 1869–1885.CrossRefPubMedGoogle Scholar
  25. 25.
    Gerlach, W.L. and Dyer, T.A., Sequence Organization of the Repeating Units in the Nucleus of Wheat Which Contains 5S rRNA Genes, Nucleic Acids Res., 1980, vol. 8, pp. 4851–4865.CrossRefPubMedGoogle Scholar
  26. 26.
    Cox, A.V., Bennett, S.T., Parokonny, A.S., et al., Comparison of Plant Telomere Locations Using a PCR-Generated Synthetic Probe, Ann. Botany, 1993, vol. 72, pp. 239–247.CrossRefGoogle Scholar
  27. 27.
    Popov, K.V., Muravenko, O.V., Samatadze, T.E., et al., Specificity of Heterochromatic Regions Analysis in Small Chromosomes of Plants, Dokl. Akad. Nauk, 2001, vol. 381, no. 4, pp. 562–565.Google Scholar
  28. 28.
    Doyle, J.J. and Doyle, J.L., A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue, Phytochem. Bull., 1987, vol. 19, pp. 11–15.Google Scholar
  29. 29.
    Rodionov, A.V., Tyupa, N.B., Kim, E.S., et al., Genomic Configuration of the Autotetraploid Oat Species Avena macrostachya Inferred from Comparative Analysis of ITS1 and ITS2 Sequences: On the Oat Karyotype Evolution during the Early Events of the Avena Species Divergence, Russ. J. Genet., 2005, vol. 41, no. 5, pp. 518–528.CrossRefGoogle Scholar
  30. 30.
    Gardes, M. and Brunes, T.D., ITS Primers with Enhanced Specificity for Basidiomycetes—Application to the Identification of Mycorrhizae and Rusts, Mol. Ecol., 1993, vol. 2, pp. 130–138.CrossRefGoogle Scholar
  31. 31.
    Ridgway, K.P., Duck, J.M., and Young, J.P.W., Identification of Roots from Grass Swards Using PCR-RFLP and FFLP of the Plastid TrnL (UAA) Intron, BMC Ecol., 2003, vol. 3, p. 8.CrossRefPubMedGoogle Scholar
  32. 32.
    White, T.J, Bruns, T, Lee, S, and Taylor, J, Amplification and Direct Sequences of Fungal Ribosomal RNA Genes for Phylogenetics, PCR Protocols: A Guide to Methods and Applications, Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J., Eds., San Diego, 1990, pp. 315–322.Google Scholar
  33. 33.
    Nosov, N.N. and Rodionov, A.V., Molecular Phylogenetic Study of Relationship between Representatives of Genus Poa (Poaseae), Bot. Zh., 2008, vol. 93, no. 12, pp. 1919–1936.Google Scholar
  34. 34.
    Kumar, S., Tamura, K., and Nei, M., MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment, Briefings Bioinf., 2004, vol. 5, pp. 150–163.CrossRefGoogle Scholar
  35. 35.
    Nei, M. and Kumar, S., Molecular Evolution and Phylogenetics, Oxford: Oxford Univ. Press, 2000.Google Scholar
  36. 36.
    Felsenstein, J., Confidence Limits on Phylogenesis: An Approach Using the Bootstrap, Evolution, 1985, vol. 39, pp. 783–791.CrossRefGoogle Scholar
  37. 37.
    Pogosyan, A.I., Narinyan, S.G., and Voskanyan, V.E., Towards Karyological and Geographical Study of Aragats Montains Flora, Biol. Zh. Arm., 1972, vol. 25, no. 9, pp. 15–22.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • E. S. Kim
    • 1
  • N. L. Bolsheva
    • 2
  • T. E. Samatadze
    • 2
  • N. N. Nosov
    • 1
  • I. V. Nosova
    • 2
  • A. V. Zelenin
    • 2
  • E. O. Punina
    • 1
  • O. V. Muravenko
    • 2
  • A. V. Rodionov
    • 1
  1. 1.Komarov Botanical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations