Skip to main content
Log in

The unique genome of two-chromosome grasses Zingeria and Colpodium, its origin, and evolution

  • Experimental Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Chromosome C-banding and two-color fluorescent in situ hybridization (FISH) were used to compare the chromosomes, to identify the chromosomal localization of the 45S and 5S rRNA genes, and to analyze the sequences of internal transcribed spacers 1 and 2 (ITS1 and ITS2) of the 45S rRNA genes in the genomes of grasses Zingeria biebersteiniana (2n = 4), Z. pisidica, Z. trichopoda (2n = 8), Colpodium versicolor (2n = 4), and Catabrosella variegata (syn. Colpodium variegatum) (2 n = 10). Differences in C-banding pattern were observed for two Z. biebersteiniana accessions from different localities. Similar C-banding patterns of chromosomes 1 and 2 were demonstrated for the Z. pisidica and Z. biebersteininana karyotypes. Chromosome C banding and localization of the 45S and 5S rRNA genes on the chromosomes of the two Zingeria species confirmed the assumption that Z. pisidica is an allotetraploid with one of the subgenomes similar to the Z. biebersteiniana genome. ITS comparisons showed that the unique two-chromosome grasses (x = 2)—Z. biebersteiniana (2n = 4), Z. trichopoda (2n = 8), Z. pisidica (2n = 8), and C. versicolor (2n = 4), which were earlier assigned to different tribes of subtribes of the family Poaceae—represent two closely related genera, the genetic distance (p-distance) between their ITSs being only 1.2–4.4%. The Zingeria species and C. versicolor formed a common clade with Catabrosella araratica (2n = 42, x = 7) on a molecular phylogenetic tree. Thus, the karyotypes of Zingeria and Colpodium, which have the lowest known basic chromosome number (x = 2), proved to be monophyletic, rather than originating from different phylogenetic lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levitskii, G.A., Cytological Bases of Evolution, Priroda, 1939, no. 5, pp. 33–44.

  2. Avdulov, N.P., Karyo-Systematic Study of the Family Gramineae, Tr. Prikladnoi Botanike Genet. Selektsii, 1931, no. 44, pp. 1–352.

  3. Paterson, A.H., Bowers, J.E., and Chapman, B.A., Ancient Polyploidization Predating Divergence of the Cereals, and Its Consequences for Comparative Genomics, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 9903–9908.

    Article  CAS  PubMed  Google Scholar 

  4. Paterson, A.H., Bowers, J.E., Feltus, F.A., et al., Comparative Genomics of Grasses Promises a Bountiful Harvest, Plant Physiol., 2009, vol. 149, pp. 125–131.

    Article  CAS  PubMed  Google Scholar 

  5. Tang, H., Bowers, J.E., Wang, X., et al., Synteny and Colinearity in Plant Genomes, Science, 2008, vol. 320, pp. 486–488.

    Article  CAS  PubMed  Google Scholar 

  6. Tsvelev, N.N. and Zhukova, P.G., On the Minimal Main Chromosome Cycle in Poaceae, Bot. Zh., 1974, vol. 59, pp. 265–269.

    Google Scholar 

  7. Sokolovskaya, A.P. and Probatova, N.S., On the Minimal Main Chromosome Cycle (2n = 4) in Colpodium versicolor (Stev.) Woronow (Poaseae), Bot. Zh., 1977, vol. 52, no. 2, pp. 241–245.

    Google Scholar 

  8. Semenov, V.I. and Semenova, E.V., Differential Staining of Chromosomes in Zingeria biebersteiniana (Claus) P. Smirn. during Mitosis and Meiosis, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Biol., 1975, vol. 3, no. 15, pp. 80–84.

    Google Scholar 

  9. Sorokin, S.N. and Punina, E.O., Karyo-Systematics of Zingeria biebersteiniana (Poaceae), Bot. Zh., 1992, vol. 77, no. 7, pp. 75–79.

    Google Scholar 

  10. Cremonini, R., Castiglione, M.R., Grif, V.G., et al., Chromosome Banding and DNA Methylation Patterns, Chromatin Organization and Nuclear DNA Content in Zingeria biebersteiniana, Biologia Plantarum, 2003, vol. 4, pp. 543–550.

    Article  Google Scholar 

  11. Bennett, M.D., Smith, J.B., and Seal, A.G., The Karyotype of the Grass Zingeria biebersteiniana (2n = 4) by Light and Electron Microscopy, Can. J. Genet. Cytol., 1986, vol. 28, pp. 554–562.

    Google Scholar 

  12. Bennett, S.T., Leitch, I.J., and Bennett, M.D., Chromosome Identification and Mapping in the Grass Zingeria biebersteiniana (2n = 4) Using Fluorochromes, Chromosome Res., 1995, vol. 3, pp. 101–108.

    Article  CAS  PubMed  Google Scholar 

  13. Kotseruba, V., Gernand, D., Meister, A., and Houben, A., Uniparental Loss of Ribosomal DNA in the Allotetraploid Grass Zingeria trichopoda (2n = 8), Genome, 2003, vol. 46, pp. 156–163.

    Article  CAS  PubMed  Google Scholar 

  14. Kotseruba, V., Pistrick, K., Gernand, D., et al., Characterization of the Low-Chromosome Number Grass Colpodium versicolor (Stev.) Schmalh. (2n = 4) by Molecular Cytogenetics, Caryologia, 2005, vol. 58, pp. 241–245.

    Google Scholar 

  15. Rodionov, A.V., Punina, E.O., Dobroradova, M.A., et al., Chromosome Numbers of Some Grasses (Poaceae): Aveneae, Poeae, Phalarideae, Phleeae, Bromeae, Triticeae, Bot. Zh., 2006, vol. 91, no. 4, pp. 615–627.

    Google Scholar 

  16. Tsvelev, N.N. and Bolkhovskikh, Z.V., Genus Zingeria P. Smirn. and Related Genera of Gramineae (Karyo-Systematic Study), Bot. Zh., 1965, vol. 50, no. 9, pp. 1317–1320.

    Google Scholar 

  17. Tsvelev, N.N., Zlaki SSSR (Grasses of the Soviet Union), Leningrad: Nauka, 1976.

    Google Scholar 

  18. Clayton, W.D. and Renvoize, S.A., Genera Graminum, Grasses of the World, London: HMSO, 1986.

    Google Scholar 

  19. Saunders, V.A. and Houben, A., The Pericentromeric Heterochromatin of the Grass Zingeria biebersteiniana (2n = 4) Is Composed of Zbcen1-Type Tandem Repeats That Are Intermingled with Accumulated Dispersedly Organized Sequences, Genome, 2001, vol. 44, no. 6, pp. 955–961.

    Article  CAS  PubMed  Google Scholar 

  20. Muravenko, O.V., Samatadze, T.E., and Zelenin, A.V., Computer and Visual Analysis of G-Like Banding Patterns of Matricaria chamomilla Chromosomes, Biol. Membrany, 1998, vol. 15, no. 6, pp. 670–678.

    CAS  Google Scholar 

  21. Samatadze, T.E., Muravenko, O.V., Popov, K.V., and Zelenin, A.V., Genome Comparison of the Matricaria chamomilla L. Varieties by the Chromosome C- and OR-Banding Patterns, Caryologia, 2001, vol. 54, pp. 299–306.

    Google Scholar 

  22. Muravenko, O.V., Samatadze, T.E., Popov, K.V., et al., Comparative Genome Analysis of Two Flax Species by C-Banding Patterns, Russ. J. Genet., 2001, vol. 37, no. 3, pp. 253–256.

    Article  CAS  Google Scholar 

  23. Semenova, O.Yu., Samatadze, T.E., Zelenin, A.V., and Muravenko, O.V., The Comparative Genome Study of the Flax Species of Sections Adenolinum and Stellerolinum by Means of Fluorescent Hybridization in situ (FISH), Biol. Membrany, 2006, vol. 23, no. 6, pp. 453–460.

    Article  CAS  Google Scholar 

  24. Gerlach, W.L. and Bedbrook, J.R., Cloning and Characterisation of Ribosomal RNA Genes from Wheat and Barley, Nucleic Acids Res., 1979, vol. 7, pp. 1869–1885.

    Article  CAS  PubMed  Google Scholar 

  25. Gerlach, W.L. and Dyer, T.A., Sequence Organization of the Repeating Units in the Nucleus of Wheat Which Contains 5S rRNA Genes, Nucleic Acids Res., 1980, vol. 8, pp. 4851–4865.

    Article  CAS  PubMed  Google Scholar 

  26. Cox, A.V., Bennett, S.T., Parokonny, A.S., et al., Comparison of Plant Telomere Locations Using a PCR-Generated Synthetic Probe, Ann. Botany, 1993, vol. 72, pp. 239–247.

    Article  CAS  Google Scholar 

  27. Popov, K.V., Muravenko, O.V., Samatadze, T.E., et al., Specificity of Heterochromatic Regions Analysis in Small Chromosomes of Plants, Dokl. Akad. Nauk, 2001, vol. 381, no. 4, pp. 562–565.

    CAS  Google Scholar 

  28. Doyle, J.J. and Doyle, J.L., A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue, Phytochem. Bull., 1987, vol. 19, pp. 11–15.

    Google Scholar 

  29. Rodionov, A.V., Tyupa, N.B., Kim, E.S., et al., Genomic Configuration of the Autotetraploid Oat Species Avena macrostachya Inferred from Comparative Analysis of ITS1 and ITS2 Sequences: On the Oat Karyotype Evolution during the Early Events of the Avena Species Divergence, Russ. J. Genet., 2005, vol. 41, no. 5, pp. 518–528.

    Article  CAS  Google Scholar 

  30. Gardes, M. and Brunes, T.D., ITS Primers with Enhanced Specificity for Basidiomycetes—Application to the Identification of Mycorrhizae and Rusts, Mol. Ecol., 1993, vol. 2, pp. 130–138.

    Article  Google Scholar 

  31. Ridgway, K.P., Duck, J.M., and Young, J.P.W., Identification of Roots from Grass Swards Using PCR-RFLP and FFLP of the Plastid TrnL (UAA) Intron, BMC Ecol., 2003, vol. 3, p. 8.

    Article  PubMed  Google Scholar 

  32. White, T.J, Bruns, T, Lee, S, and Taylor, J, Amplification and Direct Sequences of Fungal Ribosomal RNA Genes for Phylogenetics, PCR Protocols: A Guide to Methods and Applications, Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J., Eds., San Diego, 1990, pp. 315–322.

  33. Nosov, N.N. and Rodionov, A.V., Molecular Phylogenetic Study of Relationship between Representatives of Genus Poa (Poaseae), Bot. Zh., 2008, vol. 93, no. 12, pp. 1919–1936.

    Google Scholar 

  34. Kumar, S., Tamura, K., and Nei, M., MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment, Briefings Bioinf., 2004, vol. 5, pp. 150–163.

    Article  CAS  Google Scholar 

  35. Nei, M. and Kumar, S., Molecular Evolution and Phylogenetics, Oxford: Oxford Univ. Press, 2000.

    Google Scholar 

  36. Felsenstein, J., Confidence Limits on Phylogenesis: An Approach Using the Bootstrap, Evolution, 1985, vol. 39, pp. 783–791.

    Article  Google Scholar 

  37. Pogosyan, A.I., Narinyan, S.G., and Voskanyan, V.E., Towards Karyological and Geographical Study of Aragats Montains Flora, Biol. Zh. Arm., 1972, vol. 25, no. 9, pp. 15–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Bolsheva.

Additional information

Original Russian Text © E.S. Kim, N.L. Bolsheva, T.E. Samatadze, N.N. Nosov, I.V. Nosova, A.V. Zelenin, E.O. Punina, O.V. Muravenko, A.V. Rodionov, 2009, published in Genetika, 2009, Vol. 45, No. 11, pp. 1506–1515.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, E.S., Bolsheva, N.L., Samatadze, T.E. et al. The unique genome of two-chromosome grasses Zingeria and Colpodium, its origin, and evolution. Russ J Genet 45, 1329–1337 (2009). https://doi.org/10.1134/S1022795409110076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795409110076

Keywords

Navigation