Skip to main content
Log in

Multifunctional regulatory mutation in Bacillus subtilis flavinogenesis system

  • Short Communications
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Among Bacillus subtilis riboflavin-resistant mutants we identified one, which differed from other regulatory mutants by overproduction of riboflavin and simultaneous upregulation of the ribC gene encoding flavokinase/FAD-synthase. Genetic and biochemical analysis showed that the ribU1 mutation determines a trans-acting factor that simultaneously regulates activity of riboflavin and truB-ribC-rpsO operons. Regulatory activity of the ribU1 mutation comprises about 10% of Rfn element activity on interaction with flavins. The ribU1 mutation can be presumably ascribed to a gene of the transcriptional regulators family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Perkins, J.B and Pero, J., Biosynthesis of Riboflavin, Biotin, Folic Acid, and Cobalamin, Bacillus subtilis and Its Closest Relatives: From Genes to Cells, Sonenshein, A.L., Hoch, J.A., and Losick, R., Eds., Washington, DC: Am. Soc. Microbiol., 2002, pp. 271–286.

    Google Scholar 

  2. Kreneva, R.A., Solovieva, I.M., Errais, L.L., et al., Investigation of the Regulation Mechanism of the ribC Gene Activity in Bacillus subtilis, Russ. J. Genet., 2001, vol. 37,no. 9, pp. 1300–1303.

    Article  CAS  Google Scholar 

  3. Solovieva, I.M., Kreneva, R.A., Errais Lopes, L., et al., The Riboflavin Kinase Encoding Gene ribR of Bacillus subtilis Is a Part of 10 Kb Operon, Which Is Negatively Regulated by the yrzC Gene Product, FEMS Microbiol. Lett., 2005, vol. 243, pp. 51–58.

    Article  PubMed  CAS  Google Scholar 

  4. Mironov, A.S., Gusarov, I., Rafikov, R., et al., Sensing Small Molecules by Nascent RNA: A Mechanism to Control Transcription in Bacteria, Cell, 2002, vol. 111, pp. 747–756.

    Article  PubMed  CAS  Google Scholar 

  5. Winkler, W., Nahvi, A., Breaker, R.R., Thiamine Derivatives Bind Messenger RNAs to Regulate Bacterial Gene Expression, Nature, 2002, vol. 419, pp. 952–956.

    Article  PubMed  CAS  Google Scholar 

  6. Gelfand, M., Mironov, A.A., Jomantas, J., et al., A Conserved RNA Structure Element Involved in the Regulation of Bacterial Riboflavin Synthesis Genes, Trends Genet., 1999, vol. 15, pp. 439–442.

    Article  PubMed  CAS  Google Scholar 

  7. Mironov, A.S., Karelov, D.V., Solovieva, I.M., et al., Relationship between the Secondary Structure and the Regulatory Activity of the Leader Region of the Riboflavin Biosynthesis Operon in Bacillus subtilis, Russ. J. Genet., 2008, vol. 44, no. 4, pp. 467–473.

    Article  CAS  Google Scholar 

  8. Gusarov, I.I., Kreneva, R.A., Podchernyaev, D.A., et al., Riboflavin Biosynthesis Genes of Bacillus amiloliquefaciens: Primary Structure, Organization, and Activity Regulation, Mol. Biol. (Moscow), 1997, vol. 31, no. 3, pp. 446–453.

    CAS  Google Scholar 

  9. Kreneva, R.A. and Perumov, D.A., Genetic Mapping of Regulatory Mutations of Bacillus subtilis Riboflavin Operon, Mol. Gen. Genet., 1990, vol. 222, pp. 467–469.

    Article  PubMed  CAS  Google Scholar 

  10. Saito, H. and Miura, K.I., Preparation of Transforming DNA by Phenol Treatment, Biochim. Biophys. Acta, 1963, vol. 42, pp. 619–629.

    Article  Google Scholar 

  11. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989, 2nd ed.

    Google Scholar 

  12. Anagnostopoulos, C. and Spizizen, J., Requirements for Transformation in Bacillus subtilis, J. Bacteriol., 1961, vol. 81, pp. 741–746.

    PubMed  CAS  Google Scholar 

  13. Miller, J., Experiments in Molecular Genetics, Cold Spring Harbor: Cold Spring Harbor Lab., 1972.

    Google Scholar 

  14. Hagihara, T., Fujio, T., Asaki, K., et al., Cloning of FAD Synthetase from Corynebacterium ammoniagenes and Its Application to FAD and FMN Production, Appl. Microbiol. Biotechnol., 1995, vol. 42, pp. 724–729.

    Article  PubMed  CAS  Google Scholar 

  15. Solovieva, I.M., Tarasov, K.V., and Perumov, D.A., Main Physicochemical Features of Monofunctional Flavokinase from Bacillus subtilis, Biochemistry (Moscow), 2003, vol. 68, pp. 212–217.

    Article  Google Scholar 

  16. Perkins, J.B., Sloma, A., Hermann, T., et al., Genetic Engineering of Bacillus subtilis for the Commercial Production of Riboflavin, J. Industrial Microbiol. Biotechnol., 1999, vol. 22, pp. 8–18.

    Article  CAS  Google Scholar 

  17. Gusarov, I.I., Kreneva, R.A., Rybak, K.V., et al., Primary Structure and Functional Activity of ribC Gene in Bacillus subtilis, Mol. Biol. (Moscow), 1997, vol. 31,no. 5, pp. 820–825.

    CAS  Google Scholar 

  18. Shazand, K., Tucker, J., Grunberg-Manago, M., et al., Similar Organization of the nusA-infB Operon in Bacillus subtilis and Escherichia coli, J. Bacteriol., 1993, vol. 175,no. 10, pp. 2280–2287.

    Google Scholar 

  19. Stepanov, A.I., Tul’chinskaya, L.S., Berezovskii, V.M., et al., Riboflavin and Lumiflavin Analogs and Alloxazin Derivatives: Influence of Analogs on Riboflavin Biosynthesis and Bacillus subtilis Growth, Genetika (Moscow), 1975, vol. 11, no. 9, pp. 116–123.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mironov.

Additional information

Original Russian Text © R.A. Kreneva, D.V. Karelov, N.V. Korolkova, A.S. Mironov, D.A. Perumov, 2009, published in Genetika, 2009, Vol. 45, No. 10, pp. 1420–1424.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreneva, R.A., Karelov, D.V., Korolkova, N.V. et al. Multifunctional regulatory mutation in Bacillus subtilis flavinogenesis system. Russ J Genet 45, 1256–1259 (2009). https://doi.org/10.1134/S1022795409100147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795409100147

Keywords

Navigation