Skip to main content
Log in

Features of alloplasmic wheat-barley substitution and addition lines (Hordeum marinum subsp. gussoneanum)-Triticum aestivum

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Two alloplasmic wheat-barley substitution lines were studied: a line replaced at three pairs of chromosomes 1Hmar(1B), 5Hmar(5D), and 7Hmar(7D), and the disomic-substituted line 7Hmar(7D). The lines were constructed on the basis of individual plants from BC1F8 and BC2F6 progeny of barley-wheat hybrids (H. marinum subsp. gussoneanum Hudson (= H. geniculatum All.) (2n = 28) × T. aestivum L.) (2n = 42) (Pyrotrix 28), respectively. Moreover, the alloplasmic wheat-barley ditelosomic addition line 7HLmar isolated among plants from the BC1F6 progeny of a barley-wheat amphiploid was studied, which in this work corresponds to BC2F10 and BC2F11 progeny. It was ascertained that when grown in the field, these alloplasmic lines manifest stable self-fertility. Plants of the given lines are characterized by low height, shortened ears, the fewer number of stems and ears, and of spikelets in the ear, by decreased grain productivity and weight of 1000 grains, in comparison with the common wheat cultivar Pyrotrix 28. The inhibition of trait expression in alloplasmic wheat-barley substitution and addition lines may be connected not only with the influence of wild barley chromosomes functioning in the genotypic environment of common wheat, but also with the effect of the barley cytoplasm. The alloplasmic line with substitution of chromosomes 1Hmar(1B), 5Hmar(5D), and 7Hmar(7D) or the alloplasmic line 5HLmar with ditelosomic addition have, in comparison with the common wheat cultivar Pyrotrix 28, an increased grain protein content, which is explained by the effect of wild barley H. marinum subsp. gussoneanum chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Islam, A.K.M.R and Shepherd, K.W, Incorporation of Barley Chromosomes into Wheat, Biotechnology in Agriculture and Forestry, vol. 13: Wheat, Bajaj, Y.P.S., Ed., Berlin: Springer Verlag, 1990, pp. 128–151.

    Google Scholar 

  2. Taketa, S. and Takeda, K., Production and Characterization of a Complete Set of Wheat-Wild Barley (Hordeum vulgare ssp. spontaneum) Chromosome Addition Lines, Breed. Sci., 2001, vol. 51, pp. 199–206.

    Article  CAS  Google Scholar 

  3. Islam, A.K.M.R., Shepherd, K.W., and Sparrow, D.H.B., Isolation and Characterization of Euplasmic Wheat-Barley Chromosome Addition Lines, Heredity, 1981, vol. 46, pp. 161–174.

    Article  Google Scholar 

  4. Koba, T., Takumi, S., and Shimada, T., Isolation, Identification and Characterization of Disomic and Translocated Barley Chromosome Addition Lines of Common Wheat, Euphytica, 1997, vol. 96, pp. 289–296.

    Article  Google Scholar 

  5. Islam, A.K.M.R. and Shepherd, K.W., Isolation of a Fertile Wheat-Barley Addition Line Carrying the Entire Barley Chromosome 1H, Euphytica, 2000, vol. 111, pp. 145–149.

    Article  Google Scholar 

  6. Islam, A.K.M.R. and Shepherd, K.W., Substituting Ability of Individual Barley Chromosomes for Wheat Chromosomes: 1. Substitutions Involving Barley Chromosomes 1, 3 and 6, Plant Breed., 1990, vol. 109, pp. 141–150.

    Article  Google Scholar 

  7. Salinas, J., Figueiras, A.M., Gonzalez-Jaen, M.T., and Benito, C., Chromosomal Location of Isozyme Markers in Wheat-Barley Addition Lines, Theor. Appl. Genet., 1985, vol. 70, pp. 192–198.

    Google Scholar 

  8. Taketa, S., Choda, M., Ohashi, R., et al., Molecular and Physical Mapping of a Barley Gene on Chromosome Arm 1HL That Causes Sterility in Hybrids with Wheat, Genome, 2002, vol. 45, pp. 617–625.

    Article  PubMed  CAS  Google Scholar 

  9. Linde-Laursen, I., Heslop-Harrison, J.S., Shepherd, K.W., and Taketa, S., The Barley Genome and Relationship with the Wheat Genomes: A Survey with an Internationally Agreed Recommendation for Barley Chromosome Nomenclature, Hereditas, 1997, vol. 126, pp. 1–16.

    Article  CAS  Google Scholar 

  10. Murai, K., Koba, T., and Shimada, T., Effects of Barley Chromosome on Heading Characters in Wheat-Barley Chromosome Addition Lines, Euphytica, 1997, vol. 96, pp. 281–287.

    Article  Google Scholar 

  11. Kawahara, T., Taketa, S., and Murai, K., Differential Effects of Cultivated and Wild Barley 5H Chromosomes on Heading Characters in Wheat-Barley Chromosome Addition Lines, Hereditas, 2002, vol. 136, pp. 195–200.

    Article  PubMed  Google Scholar 

  12. Martin, A, Martin, L.M, Cabrera, A, et al., The Potential of Hordeum chilense in Breeding Triticeae Species, Triticeae III, Jaradat, A.A., Ed., Enfield: Science Publ. 1998, pp. 377–386.

    Google Scholar 

  13. Alvarez, J.B., Ballesteros, J., Sillero, J.A., and Martin, L.M., Tritordeum: A New Crop of Potential Importance in the Food Industry, Hereditas, 1992, vol. 116, pp. 193–197.

    Article  Google Scholar 

  14. Hernandez, P., Rubio, M.J., and Martin, A., Development of RAPD Markers in Tritordeum and Addition Lines of Hordeum chilense in Triticum aestivum, Plant Breed., 1996, vol. 115, pp. 52–56.

    Article  CAS  Google Scholar 

  15. Rubiales, D., Reader, S.M., and Martin, A., Chromosomal Location of Resistance to Septoria tritici in Hordeum chilense Determined by the Study of Chromosomal Addition and Substitution Lines in ‘Chinese Spring’ Wheat, Euphytica, 2000, vol. 115, pp. 221–224.

    Article  Google Scholar 

  16. Fernandez, J.A. and Jouve, N., The Addition of Hordeum chilense Chromosomes to Triticum turgidum conv. durum: Biochemical, Karyological and Morphological Characterization, Euphytica, 1998, vol. 37, pp. 247–259.

    Google Scholar 

  17. Alvarez, J.B., Martin, L.M., and Martin, A., Chromosomal Localization of Genes for Carotenoid Pigments Using Addition Lines of Hordeum chilense in Wheat, Plant Breed., 1998, vol. 117, pp. 287–289.

    Article  CAS  Google Scholar 

  18. Foster, B.P., Philips, M.S., Miller, M.S., et al., Chromosomal Localization of Genes Controlling Tolerance to Salt (NaCl) and Vigour in Hordeum vulgare and Hordeum chilense, Heredity, 1990, vol. 65, pp. 99–107.

    Article  Google Scholar 

  19. Castro, A.M., Masrtin, A., and Masrtin, L.M., Location of Genes Controlling Resistance to Greenbug (Schizaphis graminum Rond.) in Hordeum chilense, Plant Breed., 1996, vol. 115, pp. 335–338.

    Article  Google Scholar 

  20. Pershina, L.A., Trubacheeva, N.V., Rakovtseva, T.S., et al., Features of the Formation of Self-Fertile Euploid Lines (2n = 42) by Self-Pollination of the 46-Chromosome Barley-Wheat BC1 Hybrid Hordeum marinum subsp. gussoneanum Hudson (=H. geniculatum All.) (2n = 28) × Triticum aestivum L. (2n = 42), Russ. J. Genet., 2006, vol. 42, no. 12, pp. 1422–1427.

    Article  CAS  Google Scholar 

  21. Trubacheeva, N.V., Badaeva, E.D., Adonina, I.G., et al., Production and Molecular and Cytogenetic Analyses of Euploid (2n = 42) and Telocentric Addition (2n = 42 + 2t) Alloplasmic Lines (Hordeum marinum subsp. gussoneanum)-Triticum aestivum, Russ. J. Genet., 2008, vol. 44, no. 1, pp. 67–73.

    Article  CAS  Google Scholar 

  22. Pershina, L.A., Numerova, O.M., Belova, L.I., et al., Expression of Fertility during Morphogenesis in Self-Pollinated Backcrossed Progenies of Barley-Wheat Amphiploids [Hordeum geniculatum All. (2n = 28) × Triticum aestivum L. (2n = 42)] (2n = 70), Russ. J. Genet., 2004, vol. 40, no. 5, pp. 510–514.

    Article  CAS  Google Scholar 

  23. Numerova, O.M., Pershina, L.A., Salina, E.A., and Shumnyi, V.K., Barley Chromosome Identifisation Using Genomic in situ Hybridization in the Genome of Backcrossed Progeny of Barley-Wheat Amphiploids [Hordeum geniculatum All. (2n = 28) × Triticum aestivum L. (2n = 42)] (2n = 70), Russ. J. Genet., 2004, vol. 40, no. 9, pp. 1007–1010.

    Article  CAS  Google Scholar 

  24. Pershina, L.A., Numerova, O.M., Belova, L.I., et al., Fertility in Barley × Wheat Hybrids H. geniculatum All. × T. aestivum L., Their Regenerants and Hybrid Progeny of Backcrosses to T. aestivum L., Cereal Res. Commun., 1988, vol. 16, nos. 3–4, pp. 157–163.

    Google Scholar 

  25. Pershina, L.A., Numerova, O.M., Belova, L.I., and Devyatkina, E.P., Biotechnological and Cytogenetic Aspects of Producing New Wheat Genotypes Using Hybrids, Euphytica, 1998, vol. 100, nos. 1–3, pp. 239–244.

    Article  Google Scholar 

  26. Ikonnikova, M.I. and Ermakov, F.I., Determination of Protein and Other Nitrogenous Compounds, Metody biokhimicheskogo issledovaniya rastenii (The Methods of Biochemical Analysis of Plants), Ermakov, A.I., Ed., Leningrad: Kolos, 1972.

    Google Scholar 

  27. Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya Shkola, 1980.

    Google Scholar 

  28. Pershina, L.A., Shumny, V.K., and Belova, L.I., Production of Barley × Rye and Barley × Wheat Hybrids, Cereal Res. Commun., 1981, vol. 9, no. 4, pp. 265–272.

    Google Scholar 

  29. Fedak, G., Perspectives on Wide Crossing in Barley, in Barley Genetics VI, Proc. 6th Int. Barley Genet. Symp., Helsingborg, Sweden, 1992, pp. 683–699.

    Google Scholar 

  30. Kruse, A., Hordeum × Triticum Hybrids, Hereditas, 1973, vol. 73, pp. 157–161.

    Google Scholar 

  31. Pershina, L.A., Numerova, O.M., Belova, L.I., et al., The Effect of the Genotypic Diversity of Hordeum vulgare L. and Triticum aestivum L. on the Crossability and Production of Partially Fertile Barley-Wheat Hybrids, Russ. J. Genet., 1998, vol. 34, no. 10, pp. 1368–1375.

    Google Scholar 

  32. Pershina, L.A., Numerova, O.M., Belova, L.I., et al., Restoration of Fertility in Backcross Progeny of Barley-Wheat Hybrids Hordeum vulgare L. (2n = 14) × Triticum aestivum L. (2n = 42) in Relation to Wheat Genotypes Involved in Backcrosses, Russ. J. Genet., 1999, vol. 35, no. 2, pp. 228–236.

    Google Scholar 

  33. Islam, A.K.M.R., Coordinator’s Report: Wheat-Barley Genetic Stocks, Barley Genet. Newslett., 2002, vol. 32, p. 178.

    Google Scholar 

  34. Yang, Y.F., Furuta, Y., Fukatani, Y., and Islam, A.K.M.R., Compensating Ability in Pollen Fertilization between Group-6 and -7 Homoeologous Chromosomes of Barley and Wheat, Genes Genet. Syst., 2000, vol. 75, pp. 251–258.

    Article  PubMed  CAS  Google Scholar 

  35. Miller, T.E., Reader, S.M., and Ainsworth, C.C., A Chromosome of Hordeum chilense Homoeologous to Group 7 of Wheat, Can. J. Genet. Cytol., 1985, vol. 27, pp. 101–104.

    Google Scholar 

  36. Kobylyanskii, V.D., Biological Characters of Wild Barley Species in Relation to Aims of Selection, Biol. Zh. Armenia, 1967, vol. 20, no. 10, pp. 41–51.

    Google Scholar 

  37. Zlatskaya, A.V., Grain Protein Content in Wheat: Genetics of the Character and Some Predictions for Its Improvement in Common Wheat, Russ. J. Genet., 2005, vol. 41, no. 8, pp. 823–834.

    Article  Google Scholar 

  38. Groos, C., Robert, N., Bervas, E., and Charmet, G., Genetic Analysis of Grain Protein-Content, Grain Yield and Thousand-Kernel Weight in Bread Wheat, Theor. Appl. Genet., 2003, vol. 106, pp. 1032–1040.

    PubMed  CAS  Google Scholar 

  39. Tao, D., Hu, F., Yang, J., et al., Cytoplasm and Cytoplasm-Nucleus Interactions Affect Agronomic Traits in Japonica Rice, Euphytica, 2004, vol. 135, pp. 129–134.

    Article  CAS  Google Scholar 

  40. Hossain, K.G., Riera-Lizarazu, O., Kalavacharla, V., et al., Molecular Cytogenetic Characterization of an Alloplasmic Durum Wheat Line with a Portion of Chromosome 1D of Triticum aestivum Carrying the scs(ae) Gene, Genome, 2004, vol. 47, pp. 206–214.

    Article  PubMed  CAS  Google Scholar 

  41. Tsunewaki, K, Plasmon Analysis as the Counterpart of Genome Analysis, Methods of Genome Analysis in Plants, Jauhar, P.P., Ed., Boca Raton: CRC, 1996, pp. 272–299.

    Google Scholar 

  42. Aksyonova, E., Sinyavskaya, M., Danilenko, N., et al., Heteroplasmy and Paternally Oriented Shift of the Organellar DNA Composition in Barley-Wheat Hybrids during Backcrosses with Wheat Parents, Genome, 2005, vol. 48, no. 5, pp. C. 761–769.

    PubMed  CAS  Google Scholar 

  43. Bildanova, L.L., Badaeva, E.D., Pershina, L.A., and Salina, E.A., Molecular Study and C-Banding of Chromosomes in Common Wheat Alloplasmic Lines Obtained from the Backcross Progeny of Barley-Wheat Hybrids Hordeum vulgare L. (2n = 14) × Triticum aestivum L. (2n = 42) and Differing in Fertility, Russ. J. Genet., 2004, vol. 40, no. 12, pp. 1383–1391.

    Article  CAS  Google Scholar 

  44. Badaeva, E.D., Pershina, L.A., and Bildanova, L.L., Cytogenetic Analysis of Alloplasmic Recombinant Lines (H. vulgare)-T. aestivum Unstable in Fertility and Viability, Russ. J. Genet., 2006, vol. 42, no. 2, pp. 140–149.

    Article  CAS  Google Scholar 

  45. Trubacheeva, N.V., Salina, E.A., and Pershina, L.A., Study of Mitochondrial Genomes of Allopllasmic Recombinant Wheat Lines Constructed on the Basis of Barley-Wheat Hybrids H. geniculatum All. (=H. marinum subsp. gussoneanum) (2n = 28) × T. aestivum L. (2n = 42) using RFLP and PCR Analyses, Russ. J. Genet., 2005, vol. 41, no. 3, pp. 269–274.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Pershina.

Additional information

Original Russian Text © L.A. Pershina, E.P. Devyatkina, L.I. Belova, N.V. Trubacheeva, V.S. Arbuzova, L.A. Kravtsova, 2009, published in Genetika, 2009, Vol. 45, No. 10, pp. 1386–1392.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pershina, L.A., Devyatkina, E.P., Belova, L.I. et al. Features of alloplasmic wheat-barley substitution and addition lines (Hordeum marinum subsp. gussoneanum)-Triticum aestivum . Russ J Genet 45, 1223–1229 (2009). https://doi.org/10.1134/S102279540910010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279540910010X

Keywords

Navigation