Skip to main content
Log in

Conservative E(y)2/Sus1 protein is the member of SAGA complex and new nuclear pore-associated complex in Drosophila

  • Molecular Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The SGA/TFC complex plays an important role in the regulation of transcription. We have examined the significance of the gene positioning in the nucleus for its transcription and subsequent export of nascent mRNA. It was demonstrated that E(y)2 protein was a subunit of the SAGA/TFTC histone acetyl transferase complex in Drosophila and that E(y)2 concentrated at the nuclear periphery. An interaction between E(y)2 and the nuclear pore complex (NPC) was demonstrated, as well as that SAGA/TFTC also contacted the NPC at nuclear periphery. In addition, it was shown that NPC formed complex with the Xmas-2 protein (X-linked male sterile 2) both in normal conditions and after heat shock. Importantly, the E(y)2 and Xmas-2 knockdown decreased the contact between the heat-shock protein 70 (hsp70) gene loci and the nuclear envelope before and after activation, which interfered with the transcription. Thus, E(y)2 and Xmas-2 together with SAGA/TFTC functioned in the anchoring of a subset of transcription sites to the NPCs to achieve efficient transcription and mRNA export.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cockell, M. and Gasser, S.M., Nuclear Compartments and Gene Regulation, Curr. Opin. Genet., 1999, vol. 9, pp. 199–205.

    Article  CAS  Google Scholar 

  2. Zink, D., Amaral, M.D., Englmann, A., et al., Transcription-Dependent Spatial Arrangements of CFTR and Adjacent Genes in Human Cell Nuclei, J. Cell Biol., 2004, vol. 166, pp. 815–825.

    Article  PubMed  CAS  Google Scholar 

  3. Pickersgill, H., Kalverda, B., de Wit, E., et al., Characterization of the Drosophila melanogaster Genome at the Nuclear Lamina, Nat. Genet., 2006, vol. 38, pp. 1005–1014.

    Article  PubMed  CAS  Google Scholar 

  4. Ishii, K., Arib, G., Lin, C., et al., Chromatin Boundaries in Budding Yeast: The Nuclear Pore Connection, Cell, 2002, vol. P, pp. 551–562.

    Article  Google Scholar 

  5. Dantonel, J.C., Murthy, K.G., Manley, J.L., and Tora, L., Transcription Factor TFIID Recruits Factor CPSF for Formation of 3′ End of mRNA, Nature, 1997, vol. 389, pp. 399–402.

    Article  PubMed  CAS  Google Scholar 

  6. Fischer, T., Strasser, K., Racz, A., et al., The mRNA Export Machinery Requires the Novel Sac3p-Thp1p Complex to Dock at the Nucleoplasmic Entrance of the Nuclear Pores, EMBO J., 2002, vol. 21, pp. 5843–5852.

    Article  PubMed  CAS  Google Scholar 

  7. Gallardo, M. and Aguilera, A., A New Hyperrecombination Mutation Identifies a Novel Yeast Gene, THP1, Connecting Transcription Elongation with Mitotic Recombination, Genetics, 2001, vol. 157, pp. 79–89.

    PubMed  CAS  Google Scholar 

  8. Georgiev, P.G., Identification of Mutations in Three Genes That Interact with Zeste in the Control of White Gene Expression in Drosophila melanogaster, Genetics, 1994, vol. 138, pp. 733–739.

    PubMed  CAS  Google Scholar 

  9. Georgieva, S., Nabirochkina, E., Dilworth, F.J., et al., The Novel Transcription Factor e(y)2 Interacts with TAF(II)40 and Potentiates Transcription Activation on Chromatin Templates, Mol. Cell. Biol., 2001, vol. 21, pp. 5223–5231.

    Article  PubMed  CAS  Google Scholar 

  10. Muratoglu, S., Georgieva, S., Papai, G., et al., Two Different Drosophila ADA2 Homologues Are Present in Distinct GCN5 Histone Acetyltransferase-Containing Complexes, Mol. Cell. Biol., 2003, vol. 23, pp. 306–321.

    Article  PubMed  CAS  Google Scholar 

  11. Pankotai, T., Komonyi, O., Bodai, L., et al., The Homologous Drosophila Transcriptional Adapters ADA2a and ADA2b Are Both Required for Normal Development but Have Different Functions, Mol. Cell. Biol., 2005, vol. 25, pp. 8215–8227.

    Article  PubMed  CAS  Google Scholar 

  12. Rodriguez-Navarro, S., Fischer, T., Luo, M.J., et al., Two Different Drosophila ADA2 Homologues Are Present in Distinct GCN5 Histone Acetyltransferase-Containing Complexes, Cell, 2004, vol. 116, pp. 75–86.

    Article  PubMed  CAS  Google Scholar 

  13. Wanker, E.E., Rovira, C., Scherzinger, E., et al., HIP-I: A Huntingtin Interacting Protein Isolated by the Yeast Two-Hybrid System, Hum. Mol. Genet., 1997, vol. 6, pp. 487–495.

    Article  PubMed  CAS  Google Scholar 

  14. Clemens, J.C., Worby, C.A., Simonson-Leff, N., et al., Use of Double-Stranded RNA Interference in Drosophila Cell Lines to Dissect Signal Transduction Pathways, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 6499–6503.

    Article  PubMed  CAS  Google Scholar 

  15. Georgieva, S., Kirschner, D.B., Jagla, T., et al., Two Novel Drosophila TAF(II)s Have Homology with Human TAF(II)30 and Are Differentially Regulated during Development, Mol. Cell. Biol., 2000, vol. 20, pp. 1639–1648.

    Article  PubMed  CAS  Google Scholar 

  16. Lebedeva, L.A., Nabirochkina, E.N., Kurshakova, M.M., et al., Occupancy of the Drosophila hsp70 Promoter by a Subset of Basal Transcription Factors Diminishes upon Transcriptional Activation, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 18087–18092.

    Article  PubMed  CAS  Google Scholar 

  17. Platero, J.S., Sharp, E.J., Adler, P.N., et al., In vivo Assay for Protein-Protein Interactions Using Drosophila Chromosomes, Chromosoma, 1996, vol. 104, pp. 393–404.

    Article  PubMed  CAS  Google Scholar 

  18. Tokuyasu, K.T., Immunochemistry on Ultrathin Frozen Sections, Histochem. J., 1980, vol. 12, pp. 381–403.

    Article  PubMed  CAS  Google Scholar 

  19. Hediger, F., Taddei, A., Neumann, F.R., et al., Methods for Visualizing Chromatin Dynamics in Living Yeast, Methods Enzymol., 2004, vol. 375, pp. 345–365.

    Article  PubMed  CAS  Google Scholar 

  20. Taddei, A., Hediger, F., Neumann, F.R., et al., Separation of Silencing from Perinuclear Anchoring Functions in Yeast Ku80, Sir4 and Esc1 Proteins, EMBO J., 2004, vol. 23, pp. 1301–1312.

    Article  PubMed  CAS  Google Scholar 

  21. Zhimulev, I.F., Genetic Organization of Polytene Chromosomes, Adv. Genet., 1999, vol. 39, pp. 1–589.

    Article  PubMed  CAS  Google Scholar 

  22. Taddei, A., Van, H.G., Hediger, F., et al., Nuclear Pore Association Confers Optimal Expression Levels for an Inducible Yeast Gene, Nature, 2006, vol. 441, pp. 774–778.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Krasnov.

Additional information

Original Russian Text © M.M. Kurshakova, D.V. Kopytova, E.N. Nabirochkina, Yu.V. Nikolenko, Yu.V. Shidlovskii, S.G. Georgieva, A.N. Krasnov, 2009, published in Genetika, 2009, Vol. 45, No. 10, pp. 1332–1340.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurshakova, M.M., Kopytova, D.V., Nabirochkina, E.N. et al. Conservative E(y)2/Sus1 protein is the member of SAGA complex and new nuclear pore-associated complex in Drosophila . Russ J Genet 45, 1174–1181 (2009). https://doi.org/10.1134/S1022795409100044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795409100044

Keywords

Navigation