Skip to main content
Log in

Genomic instability in sunflower interspecific hybrids

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The expression of genomic instability was studied at the phenotypical (morphological characters, electrophoretic spectra of seed storage proteins) and molecular (DNA amplification products) levels in interspecific hybrids (ISHs) from crosses of inbred lines of cultivated sunflower Helianthus annuus with perennial species of the genus Helianthus and in introgressive lines (ILs) produced on their basis. Unstable state of the locus determining the trait of lower branching was proved by the method of hybridological analysis. It was shown with the use of RAPD markers that the IL genome is characterized by instability even after long-term inbreeding (in generations F8-F12). In progenies of different combinations of interspecific crosses, identical polymorphic variants were revealed for a seed storage protein, helianthinin, and for DNA fragments homologous to structural genes of functionally important proteins, suggesting the nonrandom character of ISH genome variation. This variation may be determined by genome reorganizations under the action of a genome shock induced by interspecific hybridization. The factors inducing reorganizations in the genome include the activity of mobile genetic elements (MGEs). Using primers specific to different MGE families, nucleotide sequences with a high level of homology to the sequences of fragments of the mobile elements MuDR, Far1, CACTA, Stowaway, and Tourist were identified in the sunflower genome. The possibility of using MGE fragments for sunflower genotyping was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christov, M., Possibilities and Problems in the Hybridization of Cultivated Sunflower with Species of the Genus Helianthus, Helia, 1991, vol. 19, no. 15, p. 35–40.

    Google Scholar 

  2. Georgieva-Todorova, J., Interspecific Hybridization in the Genus Helianthus L., Zeitschrift Pflanzenzuchtung, 1984, vol. 93, pp. 265–279.

    Google Scholar 

  3. Gavrilova, V.A., Savchenko, N.A., Tolstaya, T.T., et al., The Use of Collection of Wild Perennial Helianthus L. Species for Heterozis Selection in Sunflower, Geneticheskie resursy kul’turnykh rastenii: Problemy mobilizatsii, inventarizatsii, sokhraneniya i izucheniya vazhneishikh sel’skokhozyaistvennykh kul’tur dlya resheniya prioritetnykh zadach selektsii (Genetic Resources of Cultivated Plants: Problems of Mobilization, Inventory, Conservation, and Study of the Most Important Crops for the Purposes of High Priority Selection), Dragavtzev, V.A, Ed., St. Petersburg: VIR, 2001.

    Google Scholar 

  4. Gavrilova, V.A., Anisimova, I.N., Rozhkova, V.T., et al., The Use of Wild Perennial Species for Creating of Introgressive Sunflower Lines, in Sovremennye problemy nauchnogo obespecheniya proizvodstva podsolnechnika (Modern Problems of Scientific Support for Sunflower Production), Proc. Int. Sci. Practical Conf., on the Occasion of the 120th Anniversary of Academician V.S. Pustovoit, Krasnodar: VNIIMK, 2006, pp. 110–123.

    Google Scholar 

  5. McClintock B. The Significance of Responses of the Genome to Challenge, Science, 1984, vol. 226, pp. 792–801.

    Article  PubMed  CAS  Google Scholar 

  6. Gerasimova, T.I., Mizrokhi, L.Yu., and Georgiev, G.P., Transposition Bursts in Some Germ Cells under Genetical Destabilization in Drosophila melanogaster Strains, Dokl. Akad. Nauk SSSR, 1984, vol. 274, no. 6, pp. 1473–1476.

    Google Scholar 

  7. Golubovsky, M.D., Organization of Genotype and the Forms of Genetic Variation in Eukaryotes, in Molekulyarnye mekhanizmy geneticheskikh protsessov: molekulyarnaya genetika, evolyutsiya i molekulyarno-geneticheskie osnovy selektsii (Molecular Mechanisms of Genetic Processes: Molecular Genetics, Evolution, and Molecular-Genetic Basis of Breeding), Moscow: Nauka, 1985, pp. 146–162.

    Google Scholar 

  8. Bennetzen, J., The Mutator Transposable Element System of Maize, Curr. Top. Microbiol. Immunol., 1996, vol. 204, pp. 195–229.

    PubMed  CAS  Google Scholar 

  9. Lisch, D., Freeling, M., Langham, R., and Choy, M., Transposase Is Widespread in the Grasses, Plant Physiol., 2003, vol. 125, pp. 1293–1303.

    Article  Google Scholar 

  10. Pereira, A., Cupers, H., Gierl, A., et al., Molecular Analysis of the En/Spm Transposable Element System of Zea mays, EMBO J., 1986, vol. 5, pp. 835–841.

    PubMed  CAS  Google Scholar 

  11. Wicker, T., Guyot, R., Yahiaoui, N., and Keller, B., CACTA Transposons in Triticeae: A Diverse Family of High-Copy Repetitive Elements, Plant Physiol., 2003, vol. 132, no. 1, pp. 52–63.

    Article  PubMed  CAS  Google Scholar 

  12. Bureau, T.E. and Wessler, S.R., Stowaway: A New Family of Inverted Repeat Elements Associated with the Genes of Both Monocotyledonous and Dicotyledonous Plants, Plant Cell, 1994, vol. 6, pp. 907–916.

    Article  PubMed  CAS  Google Scholar 

  13. Casacuberta, E., Casacuberta, J., Puigdomenech, P., and Monfort, A., Presence of Miniature Inverted-Repeat Transposable Elements (MITEs) in the Genome of Arabidopsis thaliana: Characterization of the Emigrant Family of Elements, Plant J., 1998, vol. 16, pp. 79–85.

    Article  PubMed  CAS  Google Scholar 

  14. Natali, L., Santini, S., Giordani, T., et al., Distribution of Ty3-gypsy- and Ty1-copia-Like DNA Sequences in the Genus Helianthus and Other Asteraceae, Genome, 2006, vol. 49, pp. 64–72.

    Article  PubMed  CAS  Google Scholar 

  15. Anisimova, I.N., Gavriljuk, I.P., and Konarev, V.G., Identification of Sunflower Lines and Varieties by Helianthinin Electrophoresis, Plant Varieties Seeds, 1991, no. 4, pp. 133–141.

  16. Anisimova, I.N., Gavrilova, V.A., Loskutov, A.V., et al., Polymorphism and Inheritance of Seed Storage Protein in Sunflower, Russ. J. Genet. 2004, vol. 40, no. 9, p. 995–1002.

    Article  CAS  Google Scholar 

  17. Shaghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., and Allard, R.W., Ribosomal DNA Spacer-Length Polymorphisms in Barley: Mendelian Inheritance, Chromosomal Location, and Population Dynamics, Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 8014–8018.

    Article  Google Scholar 

  18. Kovacik, A. and Skaloud, V., Collection of Sunflower Marker Genes Available for Genetic Studies, Helia, 1980, no. 3, pp. 27–28.

  19. Gavrilova, V.A. and Anisimova, I.N., Genetika kul’turnykh rastenii: Podsolnechnik (Genetics of Cultivated Plants: Sunflower), St. Petersburg: VIR, 2003.

    Google Scholar 

  20. Anisimova, I.N., Gavrilova, V.A., and Timofeeva, G.I., Inheritance of Electrophoretic Spectra of Storage Proteins of Sunflower Seeds, in Sovremennye problemy nauchnogo obespecheniya proizvodstva podsolnechnika (Modern Problems of Scientific Support for Sunflower Production), Proc. Int. Sci. Practical Conf., on the 120th Anniversary of Academician V.S. Pustovoit, Krasnodar: VNIIMK, 2006, pp. 162–174.

    Google Scholar 

  21. Sossey-Alaoui, K., Serieys, H., Tersac, M., et al., Evidence for Several Genomes in Helianthus, Theor. Appl. Genet., 1998, vol. 97, pp. 422–430.

    Article  CAS  Google Scholar 

  22. Faure, N., Serieys, H., Berville, A., et al., Occurrence of Partial Hybrids in Wide Crosses between Sunflower (Helianthus annuus) and Perennial Species H. mollis and H. orgyalis, Theor. Appl. Genet., 2002, vol. 104, pp. 652–660.

    Article  PubMed  CAS  Google Scholar 

  23. Tasci-Adjukovic, K., Vasic, D., and Nagl, N., Regeneration of Interspecific Somatic Hybrids between Helianthus annuus L. and Helianthus maximiliani (Schrader) via Protoplast Electrofusion, Plant Cell Rep., 2006, vol. 25, no. 7, pp. 698–704.

    Article  Google Scholar 

  24. Kräuter, R., Steinmetz, A., and Freidt, W., Efficient Interspecific Hybridization in the Genus Helianthus via “Embryo Rescue” and Characterization of the Hybrids, Theor. Appl. Genet., 1991, vol. 82, pp. 521–525.

    Article  Google Scholar 

  25. Cazaux, E., Serieys, H., Lambert, P., et al., Phenotypic and Molecular Analyses of “Sunflower × Helianthus mollis” Interspecific Crosses, Proc. 14th Int. Sunflower Conf., 1996, pp. 1093–1098.

  26. Röncke, S., Hahn, V., Horn, R., et al., Interspecific Hybrids of Sunflower as a Source of Sclerotinia Resistance, Plant Breed., 2004, vol. 12, pp. 154–157.

    Google Scholar 

  27. Encheva, J., Köhler, H., Christov, M., and Friedt, W., Interspecific Hybrids between Cultivated Sunflower (Helianthus annuus L.) and Verbesina helianthoides (Genus Verbesina) — RAPD Analysis, Helia, 2005, vol. 28, pp. 37–44.

    Article  Google Scholar 

  28. Kasha, K.J. and Kao, K.N., High Frequency Haploid Production in Barley (Hordeum vulgare L.), Nature, 1970, vol. 225, pp. 874–876.

    Article  PubMed  CAS  Google Scholar 

  29. Song, K., Lu, P., Tang, K., and Osborn, T.C., Rapid Genome Changes in Synthetic Polyploid of Brassica and Its Implications for Polyploidy Evolution, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 7719–7723.

    Article  PubMed  CAS  Google Scholar 

  30. Garcia, G.M., Tallury, S.P., Stalker, H.T., and Kochert, G., Molecular Analysis of Arachis Interspecific Hybrids, Theor. Appl. Genet., 2006, vol. 112, no. 7, pp. 1342–1348.

    Article  PubMed  CAS  Google Scholar 

  31. Hershberger, R.J., Benito, M.I., Hardeman, K.J., et al., Characterization of the Major Transcripts Encoded by the Regulatory MuDR Transposable Element of Maize, Genetics, 1995, vol. 140, no. 3, pp. 1087–1098.

    PubMed  CAS  Google Scholar 

  32. Hudson, M., Ringli, C., Boylan, M.T., and Quail, P.H., The FAR1 Locus Encodes a Novel Nuclear Protein Specific to Phytochrome A Signaling, Genes Dev., 1999, vol. 13, no. 15, pp. 2017–2027.

    Article  PubMed  CAS  Google Scholar 

  33. Langdon, T., Jenkins, G., Hasterok, R., et al., A High-Copy-Number CACTA Family Transposon in Temperate Grasses and Cereals, Genetics, 2003, vol. 163, no. 3, pp. 1097–1108.

    PubMed  CAS  Google Scholar 

  34. Mitina, I. and Tumanova, L., Mu7-Like Sequences in Some Plant Genomes, Materiale “Inginerie geneti a i biotehnologii moderne”, Chišinåu, 2002, pp. 59–64.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Anisimova.

Additional information

Original Russian Text © I.N. Anisimova, L.G. Tumanova, V.A. Gavrilova, A.V. Dyagileva, L.I. Pasha, V.A. Mitin, G.I. Timofeyeva, 2009, published in Genetika, 2009, Vol. 45, No. 8, pp. 1067–1077.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anisimova, I.N., Tumanova, L.G., Gavrilova, V.A. et al. Genomic instability in sunflower interspecific hybrids. Russ J Genet 45, 934–943 (2009). https://doi.org/10.1134/S1022795409080079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795409080079

Keywords

Navigation